Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
High-temperature stealth is vital for enhancing the concealment, survivability, and longevity of critical assets. However, achieving stealth across multiple infrared bands-particularly in the short-wave infrared (SWIR) band-along with microwave stealth and efficient thermal management at high temperatures, remains a significant challenge. Here, we propose a strategy that integrates an IR-selective emitter (Mo/Si multilayer films) and a microwave metasurface (TiB-AlO-TiB) to enable multi-infrared band stealth, encompassing mid-wave infrared (MWIR), long-wave infrared (LWIR), and SWIR bands, and microwave (X-band) stealth at 700 °C, with simultaneous radiative cooling in non-atmospheric window (5-8 μm). At 700 °C, the device exhibits low emissivity of 0.38/0.44/0.60 in the MWIR/LWIR/SWIR bands, reflection loss below - 3 dB in the X-band (9.6-12 GHz), and high emissivity of 0.82 in 5-8 μm range-corresponding to a cooling power of 9.57 kW m. Moreover, under an input power of 17.3 kW m-equivalent to the aerodynamic heating at Mach 2.2-the device demonstrates a temperature reduction of 72.4 °C compared to a conventional low-emissivity molybdenum surface at high temperatures. This work provides comprehensive guidance on high-temperature stealth design, with far-reaching implications for multispectral information processing and thermal management in extreme high-temperature environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933609 | PMC |
http://dx.doi.org/10.1007/s40820-025-01712-5 | DOI Listing |