Enhanced Detection of Enrofloxacin in Seawater Using a Newly Selected Aptamer on a Graphite Oxide-Based Biosensor.

Anal Chem

Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong Hong Kong SAR 999077, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Developing aptasensors offers several advantages including sensitivity, selectivity, cost-effectiveness, and speed over traditional analytical techniques for antibiotic detection. We have successfully identified Enro_ap3, a 30-mer enrofloxacin-binding aptamer with micromolar binding affinity, through an optimized Capture-SELEX platform. Compared to other reported enrofloxacin-binding aptamers, this shorter aptamer not only streamlines the design process but also eliminates the common issue of strong nonspecific binding to the GO surface, thereby improving the overall detection capabilities of the biosensor (GO-Enro_ap3-FAM). This GO aptasensor demonstrated remarkable selectivity by effectively distinguishing enrofloxacin from different structurally diverse antibiotics. The sensor boasts a LOD of 32.15 μg/mL, 2.5 times more sensitive than the original 30-mer, with recoveries of 74%-92% and relative standard deviations of 6.3%-12.5% in seawater samples spiked with enrofloxacin. Furthermore, the GO aptasensor's detection capabilities were found to be on par with traditional LC-MS/MS techniques, exhibiting no significant differences in recovery rates even in complex matrices. The sensor's performance remained consistent across variations in salinity, acidity, and total organic carbon concentrations in seawater samples collected from different locations, underlining its robustness in diverse environmental conditions and its suitability for real-world seawater monitoring applications. Our findings highlight the importance of the aptamer's chain length and its binding affinity toward the target after immobilization on the GO substrate. These factors significantly impact the performance of GO aptasensors in seawater. Overall, the GO aptasensor provides a well-balanced approach, combining sensitivity, environmental adaptability, and practical usability for detecting pharmaceutical contaminants, such as antibiotics, in marine environments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c07052DOI Listing

Publication Analysis

Top Keywords

binding affinity
8
detection capabilities
8
seawater samples
8
seawater
5
enhanced detection
4
detection enrofloxacin
4
enrofloxacin seawater
4
seawater newly
4
newly selected
4
selected aptamer
4

Similar Publications

Integrative profiling of lung cancer biomarkers EGFR, ALK, KRAS, and PD-1 with emphasis on nanomaterials-assisted immunomodulation and targeted therapy.

Front Immunol

September 2025

Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.

View Article and Find Full Text PDF

This study utilized integrated sensory-guided, machine learning, and bioinformatics strategies identify umami-enhancing peptides from , investigated their mechanism of umami enhancement, and confirmed their umami-enhancing properties through sensory evaluations and electronic tongue. Three umami-enhancing peptides (APDGLPTGQ, SDDGFQ, and GLGDDL) demonstrated synergistic/additive effects by significantly enhancing umami intensity and duration in monosodium glutamate (MSG). Furthermore, molecular docking showed that these umami-enhancing peptides enhanced both the binding affinity and interaction forces between MSG and the T1R1/T1R3 receptor system, thereby enhancing umami perception.

View Article and Find Full Text PDF

Incorporating non-natural amino acids (NNAAs) into peptides enhances therapeutic properties, including binding affinity, metabolic stability, and half-life time. The pursuit of novel NNAAs for improved peptide designs faces the challenge of effective synthesis of these building blocks as well as the entire peptide itself. Solid-Phase Peptide Synthesis (SPPS) is an essential technology for the automated assembly of peptides with NNAAs, necessitating careful protection for effective coupling of amino acids in the peptide chain.

View Article and Find Full Text PDF

In the cardiovascular system, elastic fibres exert a fundamental role providing the long-range elasticity required for physiological functions. Elastic fibres are complex in composition and structure containing, in addition to elastin, a wide range of matrix components, such as microfibrillar proteins, calcium-binding proteins and glycosaminoglycans. Changes in composition and/or structure can affect the biomechanics of the tissue as well as the intrinsic affinity of elastin for Ca ions.

View Article and Find Full Text PDF

, a causative agent of lymphatic filariasis, relies on its endosymbiont for survival. MurE ligase, a key enzyme in peptidoglycan biosynthesis, serves as a promising drug target for anti-filarial therapy. In this study, we employed a hierarchical virtual screening pipeline to identify phytochemical inhibitors targeting the MurE enzyme of the endosymbiont of (MurE).

View Article and Find Full Text PDF