98%
921
2 minutes
20
Critical-sized bone defects pose notable therapeutic challenges and often require extensive bone grafts for effective intervention, leading to a substantial medical burden. The scarcity of autologous bone and the complex architecture of trabecular bone necessitate the development of cost-effective biomimetic graft materials. In this study, we developed a MgO nanoparticle-incorporated hydrogel scaffold (P-G-C-MgO2) using a freeze-induced phase separation approach. The scaffold achieved a porous structure with 56.48 ± 7.062 % porosity and an average pore size of 565.7 ± 53.62 μm, closely mimicking natural trabecular bone. It demonstrated exceptional mechanical stability during degradation and consistently released bioactive components, including Mg, type I collagen, and gelatin. These features facilitated early cell recruitment and osteogenic differentiation. In a distal femoral bone defect model, P-G-C-MgO2 exhibited excellent osseointegration and significantly enhanced new bone regeneration. This biomimetic design offers a promising solution for bone defect repair. Moreover, it established a novel phase-separation-based strategy for fabricating porous hydrogel scaffolds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929891 | PMC |
http://dx.doi.org/10.1016/j.mtbio.2025.101631 | DOI Listing |
Eur J Case Rep Intern Med
August 2025
Division of Hematology and Oncology, UNM Comprehensive Cancer Center, Albuquerque, USA.
Background: Blinatumomab and inotuzumab ozogamicin (InO) are B-cell targeted agents used in the frontline and relapsed/refractory treatment of B-cell acute lymphoblastic leukaemia (B-ALL). Blinatumomab, a bispecific T-cell engager that targets CD19 and CD3, and InO, an antibody-drug conjugate targeting CD22, have both shown efficacy. However, recent reports have noted lineage conversion as a complication when these agents are used individually or sequentially.
View Article and Find Full Text PDFRegen Biomater
August 2025
Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Orthopaedic and Reconstructive Surgery/Pediatric Orthopaedics, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.
Distraction osteogenesis (DO) is an endogenous bone tissue engineering technique that harnesses the regenerative potential of bone and has been widely applied in limb lengthening, bone defect repair, and craniofacial reconstruction. The DO procedure consists of three distinct phases: the latency phase, the distraction phase, and the consolidation phase, each characterized by unique biological processes. In recent years, increasing attention has been directed toward the role of the immune system during DO.
View Article and Find Full Text PDFiScience
September 2025
Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Biomaterials for Oral Disease, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China.
This study highlights the biomedical relevance of injectable TS (tannic acid-silk fibroin)-Mg/Sr hydrogels in alveolar bone repair, particularly their prospective role as carriers for stem cells from the apical papilla (SCAPs) in tissue regeneration. By utilizing self-assembling silk material, noted for its favorable handling properties, we present a useful approach for single-wall bone defects, such as bone fenestration and fractures in the oral cavity. Furthermore, our findings regarding the involvement of the TRPM7 ion channel indicate a possible regulatory pathway for improving alveolar bone defect repair.
View Article and Find Full Text PDFBlood Cell Ther
August 2025
Department of Clinical Hematology and Medical Oncology, Postgraduate Institute Of Medical Education And Research (PGIMER), Chandigarh, India.
Background: Bone marrow (BM) Measurable Residual Disease (MRD) assessments underestimate disease burden in multiple myeloma, as focal lesions can exist outside the marrow. Functional imaging, like positron emission tomography-computed tomography (PET-CT), offers valuable insights into residual disease beyond the marrow. Combining marrow flow cytometry (FCM) with PET-CT for a composite MRD (cMRD) assessment before and after autologous stem cell transplant (ASCT) is expected to provide prognostic information, particularly in settings where patients receive extended duration of anti-myeloma therapy prior to ASCT.
View Article and Find Full Text PDF