Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The distribution of mobile water during slug flows in coalbed methane (CBM) wells directly affects the water pressure propagation path. In this article, the distribution characteristics of gas and water in fractures during slug flow are characterized by gas-liquid microscopic flow experiments. Fluid-structure interaction was adopted to analyze the fracture morphology after deformation under stress. A mathematical model of the critical fracture size for migration of mobile water during slug flows was established through nuclear magnetic resonance tests, contact-angle tests, and the theory of the gas-water migration equilibrium. The results show that the flow rate of the gas and liquid affects the length and period of the gas plug and slug. The gas-liquid-solid three-phase properties affect the shape of the gas-liquid boundary. When the mobile water during slug flows is transformed into bound water, the fractures are deformed to an hourglass shape. The fracture size for migration of mobile water is negatively correlated with the reservoir pressure and contact angle with a power exponent while linearly positively correlated with the surface tension. Using fracturing fluids with low surface tension and high liquid-solid contact angles can promote the expulsion of liquids from reservoir fractures, thereby achieving higher resource productivity. Mathematical statistical methods have been employed to establish a rapid calculation model for the movable water transport fracture size. In summary, the research provides an effective and accurate quantitative method of evaluation for the critical fracture size for the migration of mobile water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923645PMC
http://dx.doi.org/10.1021/acsomega.4c09684DOI Listing

Publication Analysis

Top Keywords

mobile water
24
fracture size
20
size migration
16
migration mobile
16
water slug
16
slug flows
16
critical fracture
12
water
10
evaluation critical
8
flows coalbed
8

Similar Publications

A rapid and specific liquid chromatography-tandem mass spectrometry method with a wide linear range was developed and validated for the simultaneous quantification of Vitamin K1 (VK1) trans- and cis- isomers in human plasma. Bovine serum albumin solution (15%) served as a surrogate matrix for preparing the calibrators to establish the quantitative curves. After liquid-liquid extraction, VK1 trans- and cis- isomers in plasma samples were separated on a ChromCore C30 column (15 cm × 4.

View Article and Find Full Text PDF

Therapeutic drug monitoring (TDM) is vital for effective optimization of pharmacological treatments. In this study, we engineered a chromatography column that is sensitive to temperature fluctuations, thereby enabling safe and straightforward TDM without relying on organic solvents. Silica beads were modified by applying poly(N-isopropylacrylamide) (PNIPAAm) hydrogels, using a condensation reaction to modify the initiator, followed by radical polymerization to integrate the PNIPAAm hydrogel.

View Article and Find Full Text PDF

Perchlorates as emerging contaminants: Sources, hazards, detection and remediation-An overview.

Chemosphere

September 2025

Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland. Electronic address:

Perchlorate contamination is a recent and significant issue in the context of environmental pollution. Perchlorates are mainly used as ingredients in solid propellants and pyrotechnic compositions. Perchlorate contamination of drinking water and food has recently become a human health concern, as studies have shown that they can interfere with the normal uptake of iodine by the thyroid gland, leading to a reduction in its production of triiodothyronine (T3) and thyroxine (T4) in vertebrates.

View Article and Find Full Text PDF

Optoelectronic polymer memristors with dynamic control for power-efficient in-sensor edge computing.

Light Sci Appl

September 2025

State Key Laboratory of Flexible Electronics, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China.

As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components.

View Article and Find Full Text PDF

Quasielastic and Inelastic Neutron Scattering Study of Ultraconfined Water in Natural Mordenite ((Ca,Na,K)AlSiO·7HO).

Langmuir

September 2025

Neutron Scattering Division, Oak Ridge National Laboratory, MS 6473, Oak Ridge, Tennessee 37831 United States.

Mordenite ((Ca,Na,K)AlSiO·7HO) is a natural and synthetic nanoporous zeolite containing several channels of different sizes in its structure. Because of this, its structure provides an important opportunity to study the relationship between confined and ultraconfined water as these channels have sizes between those typical of these water environments. In this study, the properties of water molecules in these environments were analyzed using inelastic and quasielastic neutron spectroscopy of a natural mordenite.

View Article and Find Full Text PDF