98%
921
2 minutes
20
Grass residue decomposition is crucial for nutrient cycling in agro-ecosystems, enhancing nutrient utilization efficiency and supporting sustainable crop management. While grass mulching has been widely studied for improving orchard soil fertility, the role of soil microbial communities in decomposing different plant organs remains unclear. Before decomposition, the aboveground and belowground plant parts were harvested and placed in separate litterbags, which were later used for evaluating the decomposition rate and chemical characteristics of the shoots and roots for 40 days (at 10 days intervals). The changes in soil fertility, soil microenvironment, soil microbial community were measured after 0, 1 and 3 months, alongside analysis of key microbial taxa under different residues treatments. The remaining mass of root litter treatment was significantly higher than that of other treatments by 72.97%, 17.53% during 1-10 days and 30-40 days, respectively. During the 40-days period, the release of potassium (K) from root litter reached 58.61%, and the decomposition of lignin was recorded at 56.94%, whereas the release of carbon (C), nitrogen (N), and phosphorus (P) remained relatively stable. Despite no significant changes in nodes, edges, and links at 30 and 90 days, the co-occurrence network of root litter exhibited modularity values of 0.774 and 0.773, respectively. The values were higher than those observed in random networks, indicating the presence of functional modules and enhanced stability within the root microbial community. Litter organs enhanced decomposition rates by positively influencing soil fertility and keystone microbial decomposers, while its soil microenvironment affects decomposition rates. Despite its recalcitrance, the chemical composition of root litter plays a key role in regulating soil microbial community structure and improving soil fertility, thereby maintaining orchard ecosystem functionality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931831 | PMC |
http://dx.doi.org/10.1186/s12870-025-06392-2 | DOI Listing |
Nutr Rev
September 2025
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.
View Article and Find Full Text PDFSci Signal
September 2025
Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35233, USA.
Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Social Science, Malawi Liverpool Wellcome Clinical Programme, Blantyre, Malawi.
Diarrhoea due to rotavirus remains a significant cause of child mortality in developing regions. Caregivers' perspectives on the social determinants of gastroenteritis and childhood vaccination, including the rotavirus vaccine, were explored through focus group discussions in Ethiopia (n = 6), Kenya (n = 14), and Malawi (n = 10), using a combination of thematic and framework analysis approaches. The results show that diarrhoea was perceived to be a burden in all three countries, particularly among infants, due to challenges in WASH (water, sanitation, and hygiene) infrastructures and poverty.
View Article and Find Full Text PDFPLoS One
September 2025
School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America.
The Gram-negative bacterium Campylobacter jejuni is part of the commensal gut microbiota of numerous animal species and a leading cause of bacterial foodborne illness in humans. Most complete genomes of C. jejuni are from strains isolated from human clinical, poultry, and ruminant samples.
View Article and Find Full Text PDF