Benzo[a]phenoxazine derivative C34 efficacy against fluconazole-resistant Candida spp.

Microb Pathog

Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio Sustainability (IB S), University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Candida infections pose a significant health risk, prompting the search for new antifungal solutions due to the diminishing effectiveness of traditional drugs. Benzo[a]phenoxazine derivatives, described to have antimicrobial activity, are promising candidates. This study assessed the antifungal efficacy of five benzo[a]phenoxazine derivatives against Candida species for an effective antifungal strategy. The antifungal activity of various compounds against C. albicans, C. auris, C. glabrata C. parapsilosis, C. krusei and C. bracarensis was assessed using the yeast EUCAST protocol. C34, the most effective compound, was encapsulated in DODAB:MO liposomes. Antifungal efficacy, adhesion, and filamentation effects were compared for free and encapsulated C34. Cytotoxicity was determined via the MTT assay in the J774A.1 macrophage-like cell line, which was also employed to assess macrophage yeast killing in the presence of C34. The MIC values ranged from 3.75 to 60 μM, with C34 emerging as the most effective compound against all tested species/strains, specifically against fluconazole-resistant strains. Encapsulation in DODAB:MO liposomes improved C34's antifungal activity for most species, reducing MIC values. Both free and encapsulated C34 effectively reduced Candida adhesion and filamentation. Cytotoxicity assessment allowed the identification of a non-cytotoxic concentration of C34 that significantly enhanced macrophage activity against C. albicans. C34 displayed potent antifungal activity against various strains, including fluconazole-resistant ones as C. auris. It reduced key virulence factors, such as adhesion and filamentation, and enhanced macrophage-mediated clearance, making it a compound of interest for further development as a potential therapeutic option.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2025.107498DOI Listing

Publication Analysis

Top Keywords

antifungal activity
12
adhesion filamentation
12
c34
8
benzo[a]phenoxazine derivatives
8
antifungal efficacy
8
effective compound
8
dodabmo liposomes
8
free encapsulated
8
encapsulated c34
8
mic values
8

Similar Publications

The pH-responsive regulator PlPacC and GATA transcription factor PlAreB are involved in the regulation of the biosynthesis of the antifungal lipopeptaibols leucinostatins in Purpureocillium lilacinum.

Microbiol Res

August 2025

Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Joint Research Unit 1158 BioEcoAgro, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium. Electronic address:

The biocontrol fungus Purpureocillium lilacinum PLBJ-1 produces leucinostatins, a class of non-ribosomal peptides (NRPs) with broad-spectrum antimicrobial activities. However, the molecular mechanisms underlying the optimization of culture conditions for leucinostatin production remain unexplored. Previous research showed that PLBJ-1 synthesizes leucinostatins more effectively in hand-made Potato Dextrose Broth (PDB-M) than in commercially available PDB (PDB-C).

View Article and Find Full Text PDF

is a significant phytopathogen in both pre- and postharvest stages of fruit development and storage. The development of environmentally-friendly biological control agents has attracted increasing research interest. In this study, we characterized a fungal strain ( LQ) that strongly inhibits .

View Article and Find Full Text PDF

Plants are constantly exposed to environmental changes and must respond carefully to ensure survival and growth. Under high temperatures, many plants exhibit a series of morphological and developmental adjustments, including increased hypocotyl and petiole elongation. These adaptations, collectively termed thermomorphogenesis, promote transpiration and water loss, thereby enhancing evaporative cooling.

View Article and Find Full Text PDF

Invited review: Structural-functional synergies of lactoferrin-bioactive compound complexes: Multidisciplinary applications.

J Dairy Sci

September 2025

Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, China. Electronic address:

This review article presents an overview of the structure-function characteristics and extensive applications of complexes formed between lactoferrin (Lf) and various bioactive compounds. Lactoferrin, a glycoprotein predominantly found in colostrum, possesses iron-binding capacity and exhibits a wide range of biological activities, including antibacterial, antiviral, antifungal, antiparasitic, anti-inflammatory, anticancer, and antitumor effects. Through complexation with proteins, phenolic compounds, polysaccharides, and other bioactive substances, the structural and functional properties of Lf are significantly improved, enhancing its potential applications in the food, pharmaceutical, cosmetic, and industrial sectors.

View Article and Find Full Text PDF

Targeted discovery of sesquiterpene indole alkaloids from Greenwayodendron suaveolens.

Phytochemistry

September 2025

Équipe "Chimie des substances naturelles" BioCIS, CNRS, Université Paris-Saclay, 17, avenue des Sciences, 91400, Orsay, France. Electronic address:

Throughout the past decades, annonaceous plants have been of particular interest to the natural product community because of their therapeutic value and their richness in isoquinoline alkaloids. Taking advantage from our laboratory historical collection of these compounds, a MS/MS database of 322 isoquinolines and other metabolites from Annonaceae was implemented and named IQAMDB . The present report describes the dereplication of known alkaloids from stem barks of Greenwayodendron suaveolens (Engl.

View Article and Find Full Text PDF