Impact of diet and exercise on mitochondrial quality and mitophagy in Alzheimer's disease.

Ageing Res Rev

Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, U

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease (AD) is a devastating neurodegenerative disorder that affects millions of people worldwide. It is characterized by the accumulation of beta-amyloid and phosphorylated tau, synaptic damage, and mitochondrial abnormalities in the brain, leading to the progressive loss of cognitive function and memory. In AD, emerging research suggests that lifestyle factors such as a healthy diet and regular exercise may play a significant role in delaying the onset and progression of the disease. Mitochondria are often referred to as the powerhouse of the cell, as they are responsible for producing the energy to cells, including neurons to maintain cognitive function. Our article elaborates on how mitochondrial quality and function decline with age and AD, leading to an increase in oxidative stress and a decrease in ATP production. Decline in mitochondrial quality can impair cellular functions contributing to the development and progression of disease with the loss of neuronal functions in AD. This article also covered mitophagy, the process by which damaged or dysfunctional mitochondria are selectively removed from the cell to maintain cellular homeostasis. Impaired mitophagy has been implicated in the progression and pathogenesis of AD. We also discussed the impact of impaired mitophagy implicated in AD, as the accumulation of damaged mitochondria can lead to increased oxidative stress. We expounded how dietary interventions and exercise can help to improve mitochondrial quality, and mitochondrial function and enhance mitophagy in AD. A diet rich in antioxidants, polyphenols, and mitochondria-targeted small molecules has been shown to enhance mitochondrial function and protect against oxidative stress, particularly in neurons with aged and mild cognitively impaired subjects and AD patients. Promoting a healthy lifestyle, mainly balanced diet and regular exercise that support mitochondrial health, in an individual can potentially delay the onset and progression of AD. In conclusion, a healthy diet and regular exercise play a crucial role in maintaining mitochondrial quality and mitochondrial function, in turn, enhancing mitophagy and synaptic activities that delay AD in the elderly populations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arr.2025.102734DOI Listing

Publication Analysis

Top Keywords

mitochondrial quality
20
diet regular
12
regular exercise
12
oxidative stress
12
mitochondrial function
12
mitochondrial
10
alzheimer's disease
8
cognitive function
8
healthy diet
8
exercise play
8

Similar Publications

Introduction: Obesity remains a critical global health challenge, intricately linked to poor dietary quality, gut microbiota dysbiosis, and mitochondrial dysfunction.

Purpose: This study aimed to investigate the comparative effects of brown rice, meal replacements, and thiazolidinediones on mitochondrial abundance and gut microbiota composition in a rat model of diet-induced obesity.

Methods And Materials: A total of twenty male Sprague Dawley rats were randomly assigned to five groups: control, high-fat high-fructose diet, and three intervention groups receiving the same obesogenic diet supplemented with brown rice, meal replacement, or thiazolidinediones for twelve weeks.

View Article and Find Full Text PDF

Diabetes has emerged as a critical global health issue, with its associated complications posing a severe threat to patients' quality of life. Current research demonstrates that imbalance in mitochondrial dynamics and autophagic dysregulation play pivotal roles in the pathogenesis of diabetic complications, particularly in diabetic cardiomyopathy, nephropathy, peripheral neuropathy and retinopathy. Strategic modulation of mitochondrial function and autophagic activity represents a promising therapeutic approach for managing diabetic complications.

View Article and Find Full Text PDF

The activation of nucleotide oligomerization domain-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is implicated in the pathogenesis of various inflammatory diseases. The natural product oridonin possesses a novel mechanism for NLRP3 inhibition and a unique binding mode with NLRP3, but its poor anti-inflammatory activity limits further application. After virtual screening of diverse natural product libraries, dehydrocostus lactone (DCL) was considered as a potential NLRP3 inhibitor.

View Article and Find Full Text PDF

This review comprehensively summarizes the current understanding of ubiquitin-specific protease 30 (USP30), covering its structural characteristics, functions in cellular processes, associations with diseases, diagnostic and therapeutic strategies, as well as controversies and future perspectives. USP30, a deubiquitinating enzyme, plays crucial roles in mitochondrial quality control, autophagy regulation, and cellular homeostasis. It is implicated in the progression of several malignancies, including hepatocellular carcinoma, breast carcinoma, and glioblastoma, as well as neurodegenerative disorders such as Parkinson's disease.

View Article and Find Full Text PDF

Aging is associated with cognitive decline, impaired spatial learning, and diminished brain function, significantly impacting quality of life (QoL). Emerging evidence suggests that lifestyle interventions, like omega-3 fatty acids (FAs) intake and regular exercise, can mitigate these age-related deficits by targeting key molecular pathways implicated in oxidative damage, inflammation, and reduced fibrinolytic activity. By doing so, omega-3 FAs, principally eicosapentaenoic acid and docosahexaenoic acid, influence signaling pathways that enhance synaptic plasticity, prevent apoptosis, and promote neurogenesis.

View Article and Find Full Text PDF