98%
921
2 minutes
20
SLX4 and XPF are two proteins involved in DNA repair, but very little is known about their potential roles in other processes of cancer cell biology. We developed original cell models with CRISPR-Cas9-mediated knock-out of SLX4 and/or XPF using five different cell lines (A549, NCI-H1703, COLO-357, HT-29 and HEK-293 T), and performed characterization with cell biology experiments including migration assays, drug sensitivity testing, cell proliferation assessment and Western blots for relevant proteins. Results showed decreased migration of all models in HT-29 cells, of XPF-deficient COLO-357 cells and of SLX4-deficient HEK-293 T cells. Modified cell models had overall increased sensitivity to cisplatin and mitomycine C, and some models showed an increased frequency of double-stranded DNA damages. One NCI-H1703 cell model showed major karyotypic modifications, and epithelial to mesenchymal transition (EMT)-related proteins were modified in several models. Finally, knocking out one or both proteins in A549 cells had not the same impact on in vivo growth in mice. These original cell models allowed us to identify new and DNA repair-unrelated cellular roles of SLX4 and XPF in cancer cell biology. Our results should be considered within work on Nucleotide Excision Repair (NER) inhibition targeting SLX, XPF or other related proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2025.116885 | DOI Listing |
Mol Med Rep
November 2025
Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, P.R. China.
Endometrial cancer (EC) is a common gynecologic malignancy that often exhibits molecular features such as extensive somatic copy number alterations, microsatellite instability and frequent mutations, which considerably affect the physical and mental well‑being of women. The Fanconi anemia (FA) pathway is a DNA damage repair pathway involving multiple FA genes that play crucial roles in DNA damage repair as well as the maintenance of genome stability. Abnormalities in FA, such as deletions or mutations, may lead to defects in DNA damage repair, resulting in increased genomic instability and/or an abnormal cell cycle, ultimately leading to EC.
View Article and Find Full Text PDFCancer Biol Ther
December 2025
Department of Urology, The First People's Hospital of Yuexi County, Liangshan Prefecture, China.
Purpose: Metastatic castration-resistant prostate cancer (mCRPC) remains a significant therapeutic challenge and a leading cause of cancer-related mortality in men. PARP inhibitors like Olaparib are effective in homologous recombination repair (HRR)-deficient tumors, but resistance often arises through DNA repair restoration. This study explores the role of the structure-specific endonuclease subunit SLX1, a catalytic subunit of the SLX1-SLX4 endonuclease complex, in Olaparib resistance.
View Article and Find Full Text PDFBiochem Pharmacol
June 2025
Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon 69008 Lyon, France. Electronic address:
SLX4 and XPF are two proteins involved in DNA repair, but very little is known about their potential roles in other processes of cancer cell biology. We developed original cell models with CRISPR-Cas9-mediated knock-out of SLX4 and/or XPF using five different cell lines (A549, NCI-H1703, COLO-357, HT-29 and HEK-293 T), and performed characterization with cell biology experiments including migration assays, drug sensitivity testing, cell proliferation assessment and Western blots for relevant proteins. Results showed decreased migration of all models in HT-29 cells, of XPF-deficient COLO-357 cells and of SLX4-deficient HEK-293 T cells.
View Article and Find Full Text PDFCell
October 2024
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas,
Chromothripsis describes the catastrophic shattering of mis-segregated chromosomes trapped within micronuclei. Although micronuclei accumulate DNA double-strand breaks and replication defects throughout interphase, how chromosomes undergo shattering remains unresolved. Using CRISPR-Cas9 screens, we identify a non-canonical role of the Fanconi anemia (FA) pathway as a driver of chromothripsis.
View Article and Find Full Text PDFNat Commun
July 2024
Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK.
DNA replication and transcription generate DNA supercoiling, which can cause topological stress and intertwining of daughter chromatin fibers, posing challenges to the completion of DNA replication and chromosome segregation. Type II topoisomerases (Top2s) are enzymes that relieve DNA supercoiling and decatenate braided sister chromatids. How Top2 complexes deal with the topological challenges in different chromatin contexts, and whether all chromosomal contexts are subjected equally to torsional stress and require Top2 activity is unknown.
View Article and Find Full Text PDF