Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multistep multihour tryptic proteolysis has limited the utility of bottom-up proteomics for cases that require immediate quantitative information. The power of proteomics to quantify biomarkers of health status cannot practically assist in clinical care if the dynamics of disease outpaces the turnaround of analysis. The recently available hyperthermoacidic archaeal (HTA) protease "Krakatoa" digests samples in a single 5 to 30 min step at pH 3 and >80 °C in conditions that disrupt most cells and tissues, denature proteins, and block disulfide reformation thereby dramatically expediting and simplifying sample preparation. The combination of quick single-step proteolysis with high-throughput dual-trapping single analytical column (DTSC) liquid chromatography-mass spectrometry (LC-MS) returns actionable data in less than 1 h from collection of unprocessed biofluid. The systematic evaluation of this methodology finds that over 160 proteins are quantified in less than 1 h from 1 μL of whole blood. Furthermore, labile Angiotensin I and II bioactive peptides along with a panel of protein species can be measured at 8 min intervals with a 20 min initial lag using targeted MS. With these methods, we analyzed serum and plasma from 53 individuals and quantified Angiotensin I and II and over 150 proteins including at least 46 that were not detected with trypsin. We discuss some of the implications of real-time proteomics including the immediate potential to advance several clinical and research applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c05172DOI Listing

Publication Analysis

Top Keywords

real-time proteomics
8
proteomics blood
4
blood biomarker
4
biomarker quantitation
4
quantitation hour
4
hour multistep
4
multistep multihour
4
multihour tryptic
4
tryptic proteolysis
4
proteolysis limited
4

Similar Publications

Background: High % of low-voltage area (LVA), a surrogate of scar, is associated with atrial fibrillation (AF) recurrence after pulmonary vein isolation (PVI). Noninvasive biomarkers of LVA are a medical need for PVI decision.

Objective: We aimed to identify the proteome profile of plasma extracellular vesicles (EVs) associated with high % LVA, their cellular origin, and their regulation by hyperglycemia.

View Article and Find Full Text PDF

Objectives: Excessive neuroinflammatory responses represent a key pathological mechanism in cerebral small vessel disease (CSVD). Dl-3--butylphthalide (NBP), a compound previously demonstrated to possess anti-inflammatory properties in ischemic stroke, was investigated for its potential therapeutic effects in a rodent model of CSVD. This study aimed to elucidate the neuroprotective mechanisms of NBP in CSVD pathogenesis.

View Article and Find Full Text PDF

State-of-the-Art and Future Directions in Structural Proteomics.

Mol Cell Proteomics

September 2025

Institute of Biotechnology, HiLIFE, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Electronic address:

Structural proteomics has undergone a profound transformation, driven by the convergence of advanced experimental methodologies and computational innovations. Cutting-edge mass spectrometry (MS)-based approaches, including cross-linking MS (XL-MS), hydrogen-deuterium exchange MS (HDX-MS), and limited proteolysis MS (LiP-MS), now enable unprecedented insights into protein topology, conformational dynamics, and protein-protein interactions. These methods, complemented by affinity purification (AP), co-immunoprecipitation (co-IP), proximity labeling (PL), and spatial proteomics techniques, have expanded our ability to characterize the structural proteome at a systems-wide scale.

View Article and Find Full Text PDF

A strategy to re-sensitise drug-resistant Gram-positive bacteria to oxazolidinone-class antibiotics.

EBioMedicine

September 2025

State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong. Electronic address:

Background: Multidrug-resistant bacterial infections have high mortality rates and few treatment options. Synergistic combinations may improve clinical outcome but traditional strategies often damage healthy microbiome. Oxazolidinone-class antibiotics are typical last-resort drugs for treating drug-resistant bacterial infections but are becoming less effective due to resistance development.

View Article and Find Full Text PDF

Hypertrophic scarring (HTS) remains a critical challenge in burn care, often resulting in debilitating contractures, chronic pain, and significant psychosocial burden. While current treatment emphasizes structural repair, recent advances underscore the importance of addressing the biological drivers of fibrosis. This review synthesizes evolving strategies in burn scar prevention, highlighting tissue-engineered matrices, autologous cell therapies, and predictive molecular tools that shift care from reactive to regenerative.

View Article and Find Full Text PDF