98%
921
2 minutes
20
With the continuous development of the new energy industry, the lifespan requirements for low-voltage electrical appliances are increasing, and the time cycle for verifying lifespan is getting longer. Traditional testing methods no longer meet these requirements. Therefore, it is necessary to introduce accelerated degradation testing technology to shorten the testing cycle. The currently commonly used accelerated degradation method considers only a single stress factor. However, an electrical appliance is subjected to various stresses simultaneously during actual usage. These stresses affect the rate of degradation to varying degrees. A single stress factor cannot reflect the actual degradation effect of the appliance. The Six Sigma design and one of its tools, the Design of Experiments (DOEs) method, are presented here. Experiments show that the DOE method can identify key stress combinations in multiple stress sources. It can improve the efficiency of acceleration factor combination selection, derive the maximum degradation range of key accelerated stress factors, and then generate a DOE test scheme. Through the analysis of the experimental results, it is further verified that the degradation of the key stress factors combination can effectively improve the efficiency of product testing. Meanwhile, the value of key stress factors obtained by DOE has a great influence on the degradation effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0250447 | DOI Listing |
Anal Chem
September 2025
Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States.
Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).
View Article and Find Full Text PDFPLoS One
September 2025
Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Medical Sciences, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China.
Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De
Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.
View Article and Find Full Text PDFDiabetologia
September 2025
Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.
Aims/hypothesis: Alpha cell dysregulation is an integral part of type 2 diabetes pathophysiology, increasing fasting as well as postprandial glucose concentrations. Alpha cell dysregulation occurs in tandem with the development of insulin resistance and changes in beta cell function. Our aim was to investigate, using mathematical modelling, the role of alpha cell dysregulation in beta cell compensatory insulin secretion and subsequent failure in the progression from normoglycaemia to type 2 diabetes defined by ADA criteria.
View Article and Find Full Text PDF