Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intracoronary optical coherence tomography (OCT) is a valuable tool for, among others, periprocedural guidance of percutaneous coronary revascularization and the assessment of stent failure. However, manual OCT image interpretation is challenging and time-consuming, which limits widespread clinical adoption. Automated analysis of OCT frames using artificial intelligence (AI) offers a potential solution. For example, AI can be employed for automated OCT image interpretation, plaque quantification, and clinical event prediction. Many AI models for these purposes have been proposed in recent years. However, these models have not been systematically evaluated in terms of model characteristics, performances, and bias. We performed a systematic review of AI models developed for OCT analysis to evaluate the trends and performances, including a systematic evaluation of potential sources of bias in model development and evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914731PMC
http://dx.doi.org/10.1093/ehjdh/ztaf005DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
intracoronary optical
8
optical coherence
8
coherence tomography
8
systematic review
8
oct image
8
image interpretation
8
oct
5
intelligence analysis
4
analysis intracoronary
4

Similar Publications

Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.

View Article and Find Full Text PDF

Background: As populations age, informal caregivers play an increasingly vital role in long-term care, with 80% of care provided by family members in Europe. However, many individuals do not immediately recognize themselves as caregivers, especially in the early stages. This lack of awareness can increase physical and emotional stress and delay access to support services.

View Article and Find Full Text PDF

Metagenomic analyses of microbial communities have unveiled a substantial level of interspecies and intraspecies genetic diversity by reconstructing metagenome-assembled genomes (MAGs). The MAG database (MAGdb) boasts an impressive collection of 74 representative research papers, spanning clinical, environmental, and animal categories and comprising 13,702 paired-end run accessions of metagenomic sequencing and 99,672 high quality MAGs with manually curated metadata. MAGdb provides a user-friendly interface that users can browse, search, and download MAGs and their corresponding metadata information.

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.

View Article and Find Full Text PDF

The rapid evolution of digital tools in recent years after COVID-19 pandemic has transformed diagnostic and therapeutic practice in neurology. This shift has highlighted the urgent need to integrate digital competencies into the training of future specialists. Key innovations such as telemedicine, artificial intelligence, and wearable health technologies have become central to improving healthcare delivery and accessibility.

View Article and Find Full Text PDF