Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The improvement in reversibility and kinetics for Zn metal anodes is crucial to facilitate the further application of aqueous zinc ion batteries. However, the abnormal surface-caused dendrites and parasitic reactions significantly impede the commercial application. Herein, we established Ohmic contact by fabricating an ultrathin semiconductor ZnTe (∼150 nm) layer on the Zn surface via magnetron sputtering to form an electron enrichment region for zinc ions attraction. Particularly, the ZnTe with a higher work function than that of Zn could render a spontaneous electron transfer from Zn to ZnTe, accelerating the zinc ions diffusion, and repelling water and negative sulfate radicals. As a result, the ultrathin ZnTe layer decreases the nucleation and deposition barrier of Zn leading to homogeneous deposition, and restrains the Zn from corrosion and hydrogen evolution reaction. The ZnTe-modified symmetric cells can stably cycle for over 2,400 h and 1,100 h at current density 1 mA cm with area capacity of 1 mAh cm and 5 mAh cm, respectively. The full cell matched with CaVO·nHO shows a 63 % capacity retention after 3,000 cycles at 3 A/g. Our work demonstrates that the construction of Ohmic contact could be an effective way to obtain highly reversible Zn anodes and promote the development of aqueous zinc ions batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2025.137294 | DOI Listing |