98%
921
2 minutes
20
Microplastics and antibiotics are typical emerging contaminants in the environment, posing considerable risks to the ecosystem and human health. Previous studies have reported synergistic or antagonistic effects in the presence of both microplastics and antibiotics, destructing cell membrane, inhibiting photosynthetic capability, and inducing antioxidant enzyme activity. However, there is still lack of comprehensive understanding of the mechanisms. This study applied infrared biospectroscopy and multivariate analysis to explore the physiological and biochemical toxicity of polystyrene microplastics and tetracycline co-exposure on Chlorella pyrenoidosa. Either tetracycline or polystyrene microplastics alone posed toxicities on C. pyrenoidosa, mainly due to changes in photosynthetic content, cell membrane permeability, MDA content and antioxidant enzyme activity. Co-exposure of tetracycline and polystyrene microplastics exhibited an antagonistic effect. Infrared spectroscopy coupled with multivariate analysis isolated the discriminating biomarkers representing different toxicity mechanisms, successfully explaining the mechanism of antagonism as reducing ROS production, regulating antioxidant enzyme activity, stabilizing cell membrane, and interfering with signaling and protein synthesis. A random forest model was developed and satisfactorily recognized the toxicity of individual toxins (accuracy of 98.75 %, sensitivity of 99.22 % and specificity of 99.65 %). It also rapidly apportioned toxicity origin and evidenced that tetracycline contributed to the majority of binary toxicities. This study provided scientific guidance and a theoretical basis for assessing and apportioning the binary toxicities of emerging contaminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.137896 | DOI Listing |
Aquat Toxicol
September 2025
State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China. Electronic address:
Microplastics (MPs) have emerged as ubiquitous environmental contaminants, while thallium (Tl), a highly toxic metalloid, is gaining attention as a novel pollutant due to its increasing release from electronic waste and mining activities. These pollutants frequently coexist in aquatic environments; however, their combined effects at environmentally relevant concentrations remain poorly understood. In this study, the adsorption behavior and joint neurotoxicity of polystyrene (PS) microplastics and Tl were systematically evaluated using Caenorhabditis elegans as a model organism.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Faculty of Fisheries, Mersin University, Yenisehir Campus, Mersin, 33160, Turkey; Mersin University, Marine Life Museum Yenisehir Campus, Mersin, 33160, Turkey.
In this study, surface water, sediment, and fish samples were collected from five regions along the northern coasts of Cyprus during both summer and winter seasons to assess their microplastic contamination levels. In surface waters, the highest microplastic concentrations per square meter were recorded in the following order: Karpaz (North) (0.16 MP/m), Güzelyurt (0.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China. Electronic address:
Microplastics (MPs) and heavy metals (HMs), well-known environmental pollutants, have attracted widespread attention owing to their increasing threats. However, the interactions of MPs and chromium (Cr) at the microscale remain poorly understood, and the effects of environmental transformation on their toxicity remain controversial. The influences of light irradiation on their conversion were investigated using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFAnal Chem
September 2025
Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-1070, United States.
In response to the growing concern of microplastics (1 μm to 5 mm) accumulation affecting human health, the development of analytical methods continues to be critical for the detection and characterization of microplastic particles. In this context, pursuing exceptional particle detection capability down to practical low levels and rapid analyses with high sample throughput makes single particle inductively coupled plasma mass spectrometry (spICP-MS) very attractive for microplastics analysis. Existing spICP-MS-based studies have routinely shown limitations in the accurate sizing and quantification of particle number concentration through targeting carbon content, with reported size limits of detection in the range of 0.
View Article and Find Full Text PDFEnviron Int
August 2025
Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain. Electronic address:
Indoor and outdoor air pollution is related to adverse human health effects, especially in children due to their ongoing physical development. This study assesses airborne microplastics (MP) concentrations and associated inhalation risks in a school in Estarreja, Portugal, near a large industrial complex producing polyvinylchloride (PVC). PM samples were collected over two campaigns (winter and spring) in four classrooms (ages 3-11 years) and adjacent outdoor areas.
View Article and Find Full Text PDF