Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Delirium manifests with comparable clinical presentations, regardless of its heterogeneous etiology. This suggests a final common pathway such as decreased electroencephalography (EEG) phase coupling. This study investigates if amplitude coupling, another mode of neural communication, is altered in delirium due to different etiologies.

Methods: We analyzed EEGs of patients from three sites with either postoperative, poststroke or medical delirium and non-delirious control patients. Amplitude envelope correlation corrected for spatial leakage (AECc) was calculated and Mann-Whitney U-tests were used to compare patients with or without delirium. AECc differences among delirium types were compared using Kruskal-Wallis tests.

Results: AECc was significantly increased in delirious (n = 173, age 79.2±9.3 years, 46 % female) as compared to non-delirious (n = 204, age 72.9±13.1 years, 45 % female) patients in the delta (median, effect size of difference: 0.16 vs. 0.12, r = 0.28, p < 0.01) and beta band (0.11 vs. 0.09, r = 0.14, p = 0.04). These changes did not differ among delirium types (p > 0.05).

Conclusions: We found modestly higher delta and beta band AECc in delirium compared to non-delirious control patients, regardless of the presumed etiology.

Significance: This study provides evidence for altered amplitude coupling as mode of impaired neuronal communication in delirium, the role of which should be investigated in future studies of neural network pathophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinph.2025.02.266DOI Listing

Publication Analysis

Top Keywords

amplitude coupling
12
delirium
8
altered delirium
8
coupling mode
8
non-delirious control
8
control patients
8
compared non-delirious
8
patients
5
amplitude
4
coupling altered
4

Similar Publications

Designing Spin-Correlated Radical Ion Pairs for Quantum Sensing of Electric Fields: Effect of Electron-Nuclear Hyperfine Coupling.

J Phys Chem A

September 2025

Department of Chemistry, Institute for Quantum Information Research and Engineering, and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113, United States.

Light-driven formation of radical ion pairs that occurs much faster than their electron spin dynamics results in correlated spins whose coherence properties can be used as a quantum-based electric field sensor. This results from the radical ion pair having charge and spin distributions that track one another. Thus, electric field induced changes in the distance between the two charges are reflected in the spin-spin distance that can be measured directly using out-of-phase electron spin echo envelope modulation (OOP-ESEEM), a pulse-EPR technique.

View Article and Find Full Text PDF

A Subsystem Perspective on Vibrational Coupled Cluster Response Theory.

J Phys Chem A

September 2025

Deparment of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.

Based on a theoretical analysis of systems composed of subsystems described using a coupled cluster parametrization, we developed a vibrational coupled cluster embedding theory specifically tailored for the computation of response properties. This work identifies several strategies for calculating excitation energies, transition probabilities, and other response functions in large systems of interacting subsystems. A particularly effective embedding approach was formulated around a Lagrangian with multilinear interaction terms, yielding a structure that is nonlinear in both coupled cluster amplitudes and multipliers.

View Article and Find Full Text PDF

Initial findings linking Virtual Reality (VR)-based encoding to increased recollection at retrieval remain inconclusive due to heterogeneous study designs and dependence on behavioral data. To clarify under which circumstances VR-based encoding affects or enhances episodic memory retrieval, the fundamental question remains whether the encoding modality, i.e.

View Article and Find Full Text PDF

Background: Phase-amplitude coupling (PAC) in the beta-gamma range has emerged as a promising electrophysiological biomarker of Parkinson's disease (PD).

Objective: This study aims to investigate how levodopa and locomotion modulate cortical (central electroencephalogram [cEEG]) and corticomuscular (cEEG-gEMG [gastrocnemius electromyography]) beta-gamma PAC in patients with PD.

Methods: Thirty patients with PD underwent simultaneous cEEG and gEMG recordings during sitting, standing, and free walking in both off and on dopaminergic states.

View Article and Find Full Text PDF

A multi-channel integrated auditory function test system.

Neuroscience

September 2025

Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China. Electronic address:

The auditory brainstem response (ABR) remains the gold standard for evaluating hearing function in both animal models and humans. Features of ABR, including threshold, wave I amplitude and latency are critical for diagnosing and investigating the mechanisms of hearing loss. Critically, the rapid proliferation of genetically engineered mouse models in hearing research has created an imperative demand for high-throughput ABR testing capabilities.

View Article and Find Full Text PDF