A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Analysis of vehicle and pedestrian detection effects of improved YOLOv8 model in drone-assisted urban traffic monitoring system. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study proposes an improved YOLOv8 model for vehicle and pedestrian detection in urban traffic monitoring systems. In order to improve the detection performance of the model, we introduced a multi-scale feature fusion module and an improved non-maximum suppression (NMS) algorithm based on the YOLOv8 model. The multi-scale feature fusion module enhances the model's detection ability for targets of different sizes by combining feature maps of different scales; the improved non-maximum suppression algorithm effectively reduces repeated detection and missed detection by optimizing the screening process of candidate boxes. Experimental results show that the improved YOLOv8 model exhibits excellent detection performance on the VisDrone2019 dataset, and outperforms other classic target detection models and the baseline YOLOv8 model in key indicators such as precision, recall, F1 score, and mean average precision (mAP). In addition, through visual analysis, our method demonstrates strong target detection capabilities in complex urban traffic environments, and can accurately identify and label targets of multiple categories. Finally, these results prove the effectiveness and superiority of the improved YOLOv8 model, providing reliable technical support for urban traffic monitoring systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11918428PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314817PLOS

Publication Analysis

Top Keywords

yolov8 model
24
improved yolov8
16
urban traffic
16
traffic monitoring
12
detection
9
vehicle pedestrian
8
pedestrian detection
8
monitoring systems
8
detection performance
8
multi-scale feature
8

Similar Publications