Transcriptomic Study of Testicular Hypoxia Adaptation in Tibetan Sheep.

Reprod Domest Anim

College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Tibetan sheep is a typical hypoxia-tolerant mammal, which lives on the plateau, at an altitude of between 2500 and 5000 m above sea level; the study of its hypoxic adaptation mechanism provides a reference for exploring the hypoxic adaptation mechanism of other animals. To grope for the genetic mechanism of adaptation to the hypoxic environment at the transcriptional level in Tibetan sheep testicular tissue, and to identify candidate genes and key pathways related to sheep adaptation, histological observation of testicular tissues from two sheep breeds was carried out using haematoxylin-eosin (HE) conventional staining. A total of 103 differentially expressed genes (DEGs) were authenticated in high altitude Tibetan sheep (ZYH) and low altitude Tibetan sheep (ZYM) by RNA sequencing technology (RNA-Seq), which included 50 up-regulated genes and 53 down-regulated genes. Functional analyses revealed several terms and pathways that were closely related to testis adaptation to the plateau. Several genes (including GGT5, AGTR2, EDN1, LPAR3, CYP2C19, IGFBP3, APOC3 and PKC1) were remarkably enriched in several pathways and terms, which may impact the Plateau adaptability of sheep by adjusting its reproductive activity and sexual maturation, and protecting Sertoli cells, various spermatocytes, and spermatogenesis processes. The results make a reasonable case for a better understanding of the molecular mechanisms of adaptation to altitude in sheep.

Download full-text PDF

Source
http://dx.doi.org/10.1111/rda.70037DOI Listing

Publication Analysis

Top Keywords

tibetan sheep
20
sheep
9
hypoxic adaptation
8
adaptation mechanism
8
altitude tibetan
8
adaptation
7
tibetan
5
genes
5
transcriptomic study
4
study testicular
4

Similar Publications

Background: India's indigenous sheep breeds have evolved under extreme and diverse agro-ecological pressures, yet the genomic basis of their resilience and local adaptation remains poorly understood.

Method: This study combines genomic inbreeding estimates, runs of homozygosity (ROH), population structure analyses, and composite selection scans to investigate three native Indian breeds-Changthangi, Deccani, and Garole-within a panel of nine breeds that also includes populations from Africa (Ethiopian Menz), East and South Asia (Tibetan, Chinese Merino, Bangladesh Garole, Bangladesh East), and Europe (Suffolk).

Results: ROH and heterozygosity estimates revealed strong contrasts: Bangladesh East sheep exhibited high genomic inbreeding (F≈14.

View Article and Find Full Text PDF

Grazing system and body weight of Tibetan sheep influence biomass allocation and decomposition in alpine meadows.

J Environ Manage

September 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China,

Grazing affects the allocation of aboveground biomass (AGB), and decomposition of litter and dung, thereby regulating material flow in grassland ecosystems. However, the combined effects of grazing system (GS) and body weight (BW) on biomass allocation remain unclear. This study had conducted a two-year experiment in an alpine meadow of Qinghai-Tibetan Plateau (QTP), in order to examine the effects of two GS (continuous grazing - CG, and rotational grazing - RG) and three BWs of Tibetan sheep (23.

View Article and Find Full Text PDF

Genome-wide selection signal analysis reveals the adaptability of Tibetan sheep to high altitudes.

Front Vet Sci

August 2025

Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Altitude adaptation is a complex process involving multiple physiological and biochemical responses to hypoxia and other environmental stresses. In-depth genetic analysis of Tibetan sheep, which exhibit significant adaptations to high-altitude hypoxia, promises to elucidate hypoxia-tolerance mechanisms in plateau animals. Here, we conducted a genome-wide selection scan on three Tibetan sheep populations: low-altitude Tao (TS; 2887 m), medium-altitude Tianjun white (WT; 3331 m), and high-altitude Huoerba (HB; 4614 m).

View Article and Find Full Text PDF

Background: As an indigenous livestock species on the Tibetan Plateau, Tibetan sheep exhibit remarkable adaptability to low temperatures and nutrient-scarce environments. During the cold season, Tibetan sheep are typically managed under two feeding regimes: barn feeding (BF) and traditional grazing (TG). However, the molecular mechanisms underlying their adaptation to these distinct management strategies remain unclear.

View Article and Find Full Text PDF

: Complete environmental adaptation requires both survival and reproductive success. The hypoxic Qinghai-Tibet Plateau (>3000 m) challenges reproduction in indigenous species. Tibetan sheep, a key plateau-adapted breed, possess remarkable hypoxic tolerance, yet the genetic basis of their reproductive success remains poorly understood.

View Article and Find Full Text PDF