Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Serous ovarian carcinoma (SOC) is the most lethal subtype of ovarian cancer, with chemoresistance to platinum-based chemotherapy remaining a major challenge in improving clinical outcomes. The role of the tumor microenvironment (TME), particularly cancer-associated fibroblasts (CAFs), in modulating chemotherapy responses is not yet fully understood.

Methods: To explore the relationship between CAF subtypes and chemotherapy sensitivity, we employed single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, spatial transcriptomics, immunohistochemistry (IHC), and immunofluorescence (IF). This multi-omics approach enabled the identification, characterization, and functional analysis of CAF subtypes in both chemotherapy-sensitive and chemotherapy-resistant SOC patients.

Results: We identified steroidogenic acute regulatory protein-positive (STAR+) cells as a novel CAF subtype enriched in chemotherapy-sensitive SOC patients. STAR + cells exhibited unique transcriptional profiles and were functionally enriched in pathways related to P450 drug metabolism, lipid metabolism, and amino acid metabolism, with enhanced pathway activity observed in chemotherapy-sensitive groups. Spatial transcriptomics and IF revealed that STAR + cells were closely localized to tumor cells, suggesting potential cell-cell interactions. Further communication analysis indicated that STAR + cells may suppress WNT signaling in tumor cells, contributing to improved chemotherapy responses. Importantly, STAR expression levels, validated by IHC, were positively correlated with chemotherapy sensitivity and improved patient prognosis. Platinum-based chemotherapy was shown to increase the proportion of STAR + cells, underscoring their dynamic response to treatment.

Conclusion: Our study identifies STAR + cells as a novel CAF subtype that enhances chemotherapy sensitivity in SOC. By modulating key metabolic pathways and potentially suppressing WNT signaling, STAR + cells could contribute to improved treatment responses. These findings position STAR + cells as a promising biomarker for predicting chemotherapy efficacy in SOC, which warrants further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911460PMC
http://dx.doi.org/10.3389/fphar.2025.1545762DOI Listing

Publication Analysis

Top Keywords

star cells
28
platinum-based chemotherapy
12
chemotherapy responses
12
chemotherapy sensitivity
12
cells
11
chemotherapy
9
star+ cells
8
tumor microenvironment
8
serous ovarian
8
ovarian carcinoma
8

Similar Publications

Single-Molecule Dual-Anchor Design Enables Extreme-Condition Lithium Metal Batteries Through Solvation Reconstruction and Cathode Polymerization.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.

Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.

View Article and Find Full Text PDF

Protocol for constructing an accessible exposure chamber for in vitro and in vivo modeling of airway environmental exposures.

STAR Protoc

September 2025

UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; UCLA Environmental and Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA

Exposure systems to study the effects of environmental exposures can be costly to purchase and difficult to use. Here, we present an accessible and cost-effective approach to building an exposure chamber in the lab. We describe steps for constructing the exposure system and writing the code to run it and simple instructions for experiments using the system.

View Article and Find Full Text PDF

Small-scale in situ Hi-C protocol for early embryos to resolve the three-dimensional genome structure.

STAR Protoc

September 2025

College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China. Electronic address:

High-throughput chromosome conformation capture (Hi-C) provides genome-wide insights into chromatin interactions within the three-dimensional structure of the nucleus, making it a powerful tool for studying genome architecture. Here, we provide a modified in situ Hi-C protocol for small cell numbers, utilizing 50-100 embryonic cells at the 8-cell stage to investigate chromatin organization during bovine early embryonic development. This protocol overcomes the challenges of limited sample availability and offers valuable insights into chromatin dynamics during bovine early embryogenesis.

View Article and Find Full Text PDF

Tracking the translocation of fluorescent-based reporters at the single-cell level in living mouse embryos requires specialized expertise in mouse embryology and deep computational skills. Here, we detail an approach to quantify cyclin-dependent kinase (CDK) activity levels in single cells throughout different stages of the pre-implantation embryo. We discuss in vitro culture strategies that enable efficient live fluorescent confocal image acquisition and subsequent cell tracking.

View Article and Find Full Text PDF

On Refining Exciton Dissociation and Charge Transport of Nonfullerene Organic Photovoltaics: from Star-Shaped Acceptors to Molecular Doping.

Adv Mater

September 2025

College of Smart Materials and Future Energy, and State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, 200438, China.

Nonfullerene acceptor-based organic solar cells have recently taken a milestone leap with power conversion efficiencies approaching 20%. A key to further boost the efficiencies up to the Shockley-Queisser limit rests upon attaining a delicate balance between exciton dissociation and charge transport. This perspective presents two seminal and reciprocal strategies developed by our group and others to reconcile the intricacy of charge carrier dynamics, spanning from intrinsic molecular structure design to extrinsic dopant exploitation.

View Article and Find Full Text PDF