98%
921
2 minutes
20
ConspectusMethods that can directly modify the skeletons of complex molecules have become increasingly attractive for preparing novel analogues without the need for synthesis in drug discovery processes. Among the various skeletal modification approaches, those targeting unstrained C-C bonds are particularly challenging to realize, owing to the relative inertness of these bonds toward common reagents. Compared to C-H or C-X (X: heteroatom) bonds, the activation of unstrained C-C bonds is often not thermodynamically and/or kinetically favorable. As a result, strategies relying on highly strained substrates or oxidative conditions are generally employed, which inevitably limit the scope and applications of C-C bond activation reactions. Hence, the development of redox-neutral catalytic C-C activation methods remains highly sought after for late-stage skeletal modification of complex bioactive compounds.In this Account, we summarize our recent progress in skeletal modifications through the catalytic activation of relatively unstrained C-C bonds. Enabled by transient or removable directing groups (DGs), the scope of C-C bond activation can be greatly expanded, encompassing a wide range of substrates, including ketones, amides, lactams, and biaryls. Consequently, different types of skeletal modification transformations have been developed. The major topics covered include the following: (1) Skeletal rearrangement and "cut-and-sew" transformations of cyclic ketones: we developed an aminopyridine/Rh--heterocyclic carbene (NHC) cooperative catalysis system that specifically targets the α-C-C bond of cyclic ketones. For substrates bearing a β-aryl substitution, the rhodacycle formed after the C-C bond activation can undergo an intramolecular C-H activation, resulting in the skeletal rearrangement from cyclopentanones/cyclohexanones to 1-tetralones/1-indanones. Additionally, the "cut-and-sew" transformations between indanones and ethylene or alkynes have been realized to offer a two-carbon ring expansion. (2) Chain homologation of linear amides and downsizing of lactams: the Rh-NHC activation system can be extended to the linear amides and lactams through preinstalling removable DGs. This approach has provided some new tools for precise amide modifications, including tunable homologation of tertiary amides via a "hook-and-slide" strategy and the downsizing transformation of lactams. (3) "Cut-and-sew" transformations of biphenols: using the preinstalled phosphinite DGs, unstrained 2,2'-biphenols can undergo split cross-coupling with various aryl iodides. When diiodide coupling partners are used, an interesting phenylene insertion into the aryl-aryl bond of biphenols can be achieved, which represents another type of "cut-and-sew" transformation.Collectively, these methods provide a reliable means to manipulate inert molecular scaffolds and offer new bond-disconnecting strategies to access useful structural motifs. The applications of these methods in the synthesis of bioactive natural products and complex analogues underscore their practical significance. Mechanistic insights gained from these studies are also discussed, which are expected to inspire future endeavors in this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103097 | PMC |
http://dx.doi.org/10.1021/acs.accounts.5c00014 | DOI Listing |
Physiol Rep
September 2025
Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden.
Human skeletal muscle comprises slow-twitch (type I) and fast-twitch (type II) fibers. Fiber type-specific analyses often require manual isolation of fibers, necessitating effective tissue preservation. While freeze-drying remains the standard, alternative preservation methods such as RNAlater and RNAlater-ICE are increasingly used.
View Article and Find Full Text PDFLipids Health Dis
September 2025
Epidemiology, Medical Faculty, University of Augsburg, Stenglingstr. 2, Augsburg, 86156, Germany.
Background: This study aimed to investigate the gender-specific associations of skeletal muscle mass and fat mass with non-alcoholic fatty liver disease (NAFLD) and NAFLD-related liver fibrosis in two population-based studies.
Methods: Analyses were based on data from the MEGA (n = 238) and the MEIA study (n = 594) conducted between 2018 and 2023 in Augsburg, Germany. Bioelectrical impedance analysis was used to evaluate relative skeletal muscle mass (rSM) and SM index (SMI) as well as relative fat mass (rFM) and FM index (FMI); furthermore, the fat-to-muscle ratio was built.
Elife
September 2025
Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig Maximilians-Universität München, Munich, Germany.
The rapid emergence of mineralized structures in diverse animal groups during the late Ediacaran and early Cambrian periods likely resulted from modifications of pre-adapted biomineralization genes inherited from a common ancestor. As the oldest extant phylum with mineralized structures, sponges are key to understanding animal biomineralization. Yet, the biomineralization process in sponges, particularly in forming spicules, is not well understood.
View Article and Find Full Text PDFChem Biol Interact
September 2025
Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for National
Aluminum is a lightweight and corrosion-resistant metal element that is widely used in industries, construction, food, and pharmaceuticals, and it can adversely affect multiple organ systems including the nervous system, skeletal system, reproductive system, blood system, and immune system. In present study, we investigated the effects of aluminum exposure on mammalian embryo development. Our data demonstrate that aluminum exposure induces mouse early embryo development defects, including those at the zygotes and 2-cell stages, causing a decrease in general transcription activity.
View Article and Find Full Text PDFBiophys Rep (N Y)
September 2025
Cellular Signal Transduction in the Cardiovascular System COBRE, University of Nevada Reno, Reno, NV 89557; Department of Nutrition, University of Nevada Reno, Reno, NV 89557. Electronic address:
Skeletal muscle alpha actin (ACTA1) is important for muscle contraction and relaxation, with historical studies focused on ACTA1 mutations in muscle dysfunction. Proteomics reports have consistently observed that actin, including ACTA1, is acetylated at multiple lysine sites. However, few reports have studied the effects of actin acetylation on cellular function, and fewer have examined ACTA1 acetylation on skeletal muscle function.
View Article and Find Full Text PDF