A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Task Planning of Multiple Unmanned Aerial Vehicles Based on Minimum Cost and Maximum Flow. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the rapid development of UAV technology, UAV delivery has gained attention for its potential to reduce labor costs. However, limitations in load capacity and energy restrict UAVs' distribution capabilities. This paper proposes a cooperative delivery scheme combining traditional trucks and UAVs to extend UAV coverage and improve delivery completion rates. For densely distributed depots in wide-area regions, we develop algorithms for task allocation and path planning in a truck-independent UAV system. Specifically, a minimum-cost, maximum-flow model is constructed to obtain sub-paths covering all delivery tasks, and resource tree-based algorithms are used to construct global paths for UAVs and trucks. Simulation results show that our algorithms reduce total energy consumption by 11.53% and 9.15% under different task points, which suggests that our proposed method can significantly enhance delivery efficiency, offering a promising solution for future logistics operations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902523PMC
http://dx.doi.org/10.3390/s25051605DOI Listing

Publication Analysis

Top Keywords

delivery
5
task planning
4
planning multiple
4
multiple unmanned
4
unmanned aerial
4
aerial vehicles
4
vehicles based
4
based minimum
4
minimum cost
4
cost maximum
4

Similar Publications