98%
921
2 minutes
20
Intracranial aneurysms, with an annual incidence of 2%-3%, reflect a rare disease associated with significant mortality and morbidity risks when ruptured. Early detection, risk stratification of high-risk subgroups, and prediction of patient outcomes are important to treatment. Radiomics is an emerging field using the quantification of medical imaging to identify parameters beyond traditional radiology interpretation that may offer diagnostic or prognostic significance. The general radiomic workflow involves image normalization and segmentation, feature extraction, feature selection or dimensional reduction, training of a predictive model, and validation of the said model. Artificial intelligence (AI) techniques have shown increasing interest in applications toward vascular pathologies, with some commercially successful software including AiDoc, RapidAI, and Viz.AI, as well as the more recent Viz Aneurysm. We performed a systematic review of 684 articles and identified 84 articles exploring the applications of radiomics and AI in aneurysm treatment. Most studies were published between 2018 and 2024, with over half of articles in 2022 and 2023. Studies included categories such as aneurysm diagnosis (25.0%), rupture risk prediction (50.0%), growth rate prediction (4.8%), hemodynamic assessment (2.4%), clinical outcome prediction (11.9%), and occlusion or stenosis assessment (6.0%). Studies utilized molecular data (2.4%), radiologic data alone (51.2%), clinical data alone (28.6%), and combined radiologic and clinical data (17.9%). These results demonstrate the current status of this emerging and exciting field. An increased pace of innovation in this space is likely with the expansion of clinical applications of radiomics and AI in multiple vascular pathologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912304 | PMC |
http://dx.doi.org/10.1111/jon.70037 | DOI Listing |
JMIR Hum Factors
September 2025
Seidenberg School of Computer Science and Information Systems, Pace University, New York City, NY, United States.
Background: As information and communication technologies and artificial intelligence (AI) become deeply integrated into daily life, the focus on users' digital well-being has grown across academic and industrial fields. However, fragmented perspectives and approaches to digital well-being in AI-powered systems hinder a holistic understanding, leaving researchers and practitioners struggling to design truly human-centered AI systems.
Objective: This paper aims to address the fragmentation by synthesizing diverse perspectives and approaches to digital well-being through a systematic literature review.
J Med Internet Res
September 2025
School of Pharmacy, Sungkyunkwan University, Gyeonggi-do, Republic of Korea.
Background: Owing to the unique characteristics of digital health interventions (DHIs), a tailored approach to economic evaluation is needed-one that is distinct from that used for pharmacotherapy. However, the absence of clear guidelines in this area is a substantial gap in the evaluation framework.
Objective: This study aims to systematically review and compare the economic evaluation literature on DHIs and pharmacotherapy for the treatment of depression.
JAMA Psychiatry
September 2025
Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville.
Importance: Behavioral variant frontotemporal dementia (bvFTD), the most common subtype of FTD, is a leading form of early-onset dementia worldwide. Accurate and timely diagnosis of bvFTD is frequently delayed due to symptoms overlapping with common psychiatric disorders, and interest has increased in identifying biomarkers that may aid in differentiating bvFTD from psychiatric disorders.
Objective: To summarize and critically review studies examining whether neurofilament light chain (NfL) in cerebrospinal fluid (CSF) or blood is a viable aid in the differential diagnosis of bvFTD vs psychiatric disorders.
JAMA Netw Open
September 2025
Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla.
Importance: Janus kinase (JAK) inhibitors are highly effective medications for several immune-mediated inflammatory diseases (IMIDs). However, safety concerns have led to regulatory restrictions.
Objective: To compare the risk of adverse events with JAK inhibitors vs tumor necrosis factor (TNF) antagonists in patients with IMIDs in head-to-head comparative effectiveness studies.