Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alkali-metal doped polyaromatic hydrocarbons (PAHs) have shown great potential in realizing exotic states of matter such as quantum spin liquids (QSLs). However, it is challenging to obtain new pure-phase candidates and perform experimental identifications accordingly. Here, we report the discovery and characterization of Cs(chrysene˙)(THF)·(THF) (1, THF = tetrahydrofuran), a pure-phase spin-½ organic magnet composed of triangular-based zig-zag magnetic layers, which give rise to strong spin frustration. Electron paramagnetic resonance and optical analyses show 1 is a Mott insulator. Despite the strong antiferromagnetic coupling, low-temperature specific heat and ac susceptibility demonstrate the absence of both long-range magnetic order and spin-glass phases down to 55 mK. Magnetic specific heat can be fitted to the power law, implying gapless spin excitation. Muon spin relaxation reveals constant spin fluctuation rates, suggesting persistent slow dynamics down to 0.3 K. Our results highlight PAHs as a promising avenue for exploring new QSLs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905111PMC
http://dx.doi.org/10.1039/d4sc08462dDOI Listing

Publication Analysis

Top Keywords

quantum spin
8
triangular-based zig-zag
8
specific heat
8
spin
6
signatures quantum
4
spin liquid
4
liquid state
4
state triangular-based
4
zig-zag polyaromatic
4
polyaromatic hydrocarbon
4

Similar Publications

Beyond Fixed-Size Skyrmions in Nanodots: Switchable Multistability with Ferromagnetic Rings.

Nano Lett

September 2025

Depto. Polimeros y Materiales Avanzados: Fisica, Quimica y Tecnologia, Universidad del País Vasco, UPV/EHU, 20018 San Sebastian, Spain.

We demonstrate a novel approach to controlling and stabilizing magnetic skyrmions in ultrathin multilayer nanostructures through spatially engineered magnetostatic fields generated by ferromagnetic nanorings. Using analytical modeling and micromagnetic simulations, we show that the stray fields from a Co/Pd ferromagnetic ring with out-of-plane magnetic anisotropy significantly enhance the Néel-type skyrmion stability in an Ir/Co/Pt nanodot, even stabilizing the skyrmion in the absence of Dzyaloshinskii-Moriya interactions. We demonstrate precise control over the skyrmion size and stability.

View Article and Find Full Text PDF

Quantum simulations of many-body systems are among the most promising applications of quantum computers. In particular, models based on strongly correlated fermions are central to our understanding of quantum chemistry and materials problems, and can lead to exotic, topological phases of matter. However, owing to the non-local nature of fermions, such models are challenging to simulate with qubit devices.

View Article and Find Full Text PDF

Observing differential spin currents by resonant inelastic X-ray scattering.

Nature

September 2025

National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.

Controlling spin currents, that is, the flow of spin angular momentum, in small magnetic devices, is the principal objective of spin electronics, a main contender for future energy-efficient information technologies. A pure spin current has never been measured directly because the associated electric stray fields and/or shifts in the non-equilibrium spin-dependent distribution functions are too small for conventional experimental detection methods optimized for charge transport. Here we report that resonant inelastic X-ray scattering (RIXS) can bridge this gap by measuring the spin current carried by magnons-the quanta of the spin wave excitations of the magnetic order-in the presence of temperature gradients across a magnetic insulator.

View Article and Find Full Text PDF

Magnon-phonon hybridization in ordered materials is a crucial phenomenon with significant implications for spintronics, magnonics, and quantum materials research. We present direct experimental evidence and theoretical insights into magnon-phonon coupling in Mn_{3}Ge, a kagome antiferromagnet with noncollinear spin order. Using inelastic x-ray scattering and ab initio modeling, we uncover strong hybridization between planar spin fluctuations and transverse optical phonons, resulting in a large hybridization gap of ∼2  meV.

View Article and Find Full Text PDF

Ultrafast light-driven strongly correlated antiferromagnetic insulators, such as prototypical NiO with a large Mott energy gap ≃4  eV, have recently attracted experimental attention using photons of both subgap [H. Qiu et al., Nat.

View Article and Find Full Text PDF