Microfluidic generation of nanoparticles using standing wave induced ultrasonic spray drying.

Nanoscale Adv

KU Leuven, Department of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spray drying is a well-established process for generating particles for various applications, including pharmaceuticals. In this process, atomization plays a crucial role by defining the size of the droplets and, consequently, particle size. While ultrasound is commonly used to enhance atomization by reducing droplet size, a novel approach has been introduced that utilizes plug flow to generate plugs resonating with an applied ultrasound frequency, triggering surface atomization. This study investigates the applicability of this method for microfluidic atomization and spray drying, particular for pharmaceutical carrier particles. The generated droplets exhibit a size of 7.24 μm and a PDI of 0.18, indicating a monodisperse distribution. The droplets are produced in discrete burst events, enabling an energy-efficient pulsed process with an applied power of less than 1 W. This approach successfully generates lipid nanoparticles with an average size of 140 nm, underscoring its potential for nanoparticle production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905916PMC
http://dx.doi.org/10.1039/d4na01012dDOI Listing

Publication Analysis

Top Keywords

spray drying
12
size
5
microfluidic generation
4
generation nanoparticles
4
nanoparticles standing
4
standing wave
4
wave induced
4
induced ultrasonic
4
ultrasonic spray
4
drying spray
4

Similar Publications

Multifaceted characterization of lactoferrin and (-)-epigallocatechin-3-gallate (EGCG) interactions: development of the pickering emulsions for microencapsulated functional foods.

Food Res Int

November 2025

Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China.

In this study, we explored the application of lactoferrin-(-)-epigallocatechin-3-gallate (LF-EGCG) complex with rapeseed, soybean, walnut, peanut and sesame oil for the preparation of Pickering emulsions and its spray-dried microcapsules. Spectroscopy and molecular docking revealed that LF-EGCG binds via hydrogen bonds, hydrophobic interactions, and van der Waals forces. Structural analysis demonstrated that 0.

View Article and Find Full Text PDF

Limosilactobacillus reuteri probiotics were encapsulated in Kudzu starch (KS) and Hemp protein (HP) complex coacervates (CC), followed by spray drying, to enhance their stability and boost their viability. The optimized conditions for CC consisted of a KS:HP ratio of 1:2 (w/w) and pH 5.0.

View Article and Find Full Text PDF

Differentiating the processing degree of animal material by mass spectrometry: A feasibility study on porcine and bovine blood-derived feed ingredients.

Food Res Int

November 2025

German Federal Institute for Risk Assessment (BfR), Department Food Safety, National Reference Laboratory for Animal Protein in Feed, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany. Electronic address:

Processing food and feed sets off a variety of reactions (Maillard, (lipid) oxidation), which may be traced by covalent changes to e.g. proteins.

View Article and Find Full Text PDF

This study evaluated the feasibility of using ferrous sulfate microparticles (FSM), produced through the combination of spray drying and spray chilling techniques, to fortify plant-based yogurt and increase dietary iron intake. The stability of FSM was assessed, and iron bioavailability was estimated using the standardized INFOGEST in vitro digestion method, followed by Caco-2 cell culture assays. FSM showed moisture content and water activity (Aw <0.

View Article and Find Full Text PDF

Tuberculosis (TB) continues to cause significant global mortality, highlighting the need for improved drug delivery systems. The objective of this paper focuses in describing the formulation, optimization and in vivo assessment of rifampicin encapsulated PLGA microparticles for site-specific inhalation therapy. Microparticles for inhalation were produced by spray drying, and the DoE methodology was applied to reach the most suitable aerodynamic properties (mass median aerodynamics diameter (MMAD) 2.

View Article and Find Full Text PDF