DNA methylation confers a cerebellum-specific identity in non-human primates.

Zool Res

Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China. E-mail:

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Selective regulation of gene expression across distinct brain regions is crucial for establishing and maintaining subdivision identities. DNA methylation, a key regulator of gene transcription, modulates transcriptional activity through the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). While DNA methylation is hypothesized to play an essential role in shaping brain identity by influencing gene expression patterns, its direct contribution, especially in primates, remains largely unexplored. This study examined DNA methylation landscapes and transcriptional profiles across four brain regions, including the cortex, cerebellum, striatum, and hippocampus, using samples from 12 rhesus monkeys. The cerebellum exhibited distinct epigenetic and transcriptional signatures, with differentially methylated regions (DMRs) significantly enriched in metabolic pathways. Notably, genes harboring clustered differentially hydroxymethylated regions (DhMRs) overlapped with those implicated in schizophrenia. Moreover, 5mC located 1 kb upstream of the ATG start codon was correlated with gene expression and exhibited region-specific associations with 5hmC. These findings provide insights into the coordinated regulation of cerebellum-specific 5mC and 5hmC highlighting their potential roles in defining cerebellar identity and contributing to neuropsychiatric diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12000133PMC
http://dx.doi.org/10.24272/j.issn.2095-8137.2024.325DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
gene expression
12
brain regions
8
dna
4
methylation confers
4
confers cerebellum-specific
4
cerebellum-specific identity
4
identity non-human
4
non-human primates
4
primates selective
4

Similar Publications

Background: Preoperative embolization is hypothesized to reduce blood loss and operative time for meningioma resection, but the impact of preoperative embolization on long-term oncological outcomes and molecular features of meningiomas is incompletely understood. Here we investigate how preoperative embolization influences perioperative and long-term outcomes and molecular features of atypical WHO grade 2 meningiomas.

Methods: Patients who underwent resection of WHO grade 2 meningiomas from 1997 to 2021 were retrospectively identified from an institutional database.

View Article and Find Full Text PDF

Precision plant epigenome editing: what, how, and why.

Trends Plant Sci

September 2025

School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, Australia, 4072. Electronic address:

Advances in genome engineering have paved the way for targeted epigenome engineering, providing fundamental insights into the role of epigenetic modifications in trait inheritance. Engineered epialleles have already delivered stable, heritable changes in agronomic traits. Despite this capacity, progress in the field has not yet achieved its potential, leaving many avenues of research unexplored.

View Article and Find Full Text PDF

Osteosarcoma (OS), the most prevalent primary bone malignancy in adolescents, is characterized by aggressive progression and early metastasis. However, the epigenetic drivers of its metastatic heterogeneity remain poorly understood. Herein, we integrated bulk DNA methylation profiling and single-cell RNA sequencing (scRNA-seq) to elucidate the epigenetic mechanisms driving OS metastatic heterogeneity.

View Article and Find Full Text PDF

Epigenetic changes and neurogenesis associated with socio-sexual behaviors.

Neurosci Biobehav Rev

September 2025

Instituto de Neurobiología, Universidad Nacional Autónoma de México.

Epigenetic mechanisms are essential in neurogenesis during development and adulthood. DNA methylation, histone post-translational modifications, and non-coding RNAs regulate gene expression to maintain the neural stem cell pool and direct the fate of newborn neurons by modulating cell proliferation, migration, differentiation, maturation, and survival. Adult neurogenesis exhibits bidirectional interactions with non-social and socio-sexual factors such as sexual behavior, mate recognition, pair bonding, parental behavior, and offspring recognition.

View Article and Find Full Text PDF

Background: Intracranial aneurysm (IA), known as pathological dilation of cerebral arteries,commonly occurring at bifurcating arteries,carries a high risk of severe morbidity and mortality if left untreated.Although the treatment and early diagnosis have significantly improved,the complex pathophysiological process of IA formation presents significant challenges in the development of targeted therapies.Efficient disease-modifying therapies for IA are not yet available.

View Article and Find Full Text PDF