Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Primary Central Nervous System Lymphoma is an aggressive central nervous system neoplasm with poor response to pharmacological treatment, partially due to insufficient drug delivery across blood-brain barrier. In this study, we developed a novel therapy for this lymphoma by combining a targeted nanopolymer treatment with an immune checkpoint inhibitor antibody (anti-PD-1). A N-(2-hydroxypropyl)methacrylamide copolymer-based nanoconjugate was designed to block tumor cell c-Myc oncogene expression by antisense oligonucleotide. Angiopep-2 peptide was conjugated to the copolymer to facilitate nanodrug crossing of the blood-brain barrier. Systemically administered polymeric nanodrug, alone or in combination with immune checkpoint inhibitor antibody anti-PD-1, was tested in syngeneic mouse model of A20 intracranial brain lymphoma. There was no significant survival difference between saline- and free anti-PD-1-treated groups. However, significant survival advantage vs. saline was observed upon treatment with nanodrug bearing Angiopep-2, H6 (6 histidines for endosome escape), and c-Myc antisense alone and especially when it was combined with anti-PD-1 antibody. Animal survival after combined treatment was also significantly increased vs. free anti-PD-1. Artificial Intelligence-assisted analysis of gene expression database after RNA-seq of tumors was used to find novel immune pathways, molecular targets and the most effective multifunctional drugs together with future drug prediction for brain lymphoma in vivo model. Spectral flow cytometry and RNA-seq analysis revealed a robust activation of tumor infiltrating T lymphocytes with enhanced interferon γ signaling and polarization to M1-type macrophages in treated tumors, which was confirmed by immunofluorescence staining. In summary, a new effective blood-brain barrier crossing nano immuno therapeutic system was developed that effectively blocked tumor c-Myc acting in combination with immune checkpoint inhibitor anti-PD-1 to treat primary brain lymphoma. The treatment improved survival of tumor-bearing animals through activation of both the adaptive and innate immune responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12148312PMC
http://dx.doi.org/10.1016/j.jconrel.2025.113611DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
16
brain lymphoma
16
immune checkpoint
12
checkpoint inhibitor
12
barrier crossing
8
primary brain
8
central nervous
8
nervous system
8
inhibitor antibody
8
antibody anti-pd-1
8

Similar Publications

Purpose: Glioblastoma (GBM) remains one of the most aggressive primary brain tumors with poor survival outcomes and a lack of approved therapies. A promising novel approach for GBM is the application of photodynamic therapy (PDT), a localized, light-activated treatment using tumor-selective photosensitizers. This narrative review describes the mechanisms, delivery systems, photosensitizers, and available evidence regarding the potential of PDT as a novel therapeutic approach for GBM.

View Article and Find Full Text PDF

Exploring LRP-1 in the liver-brain axis: implications for Alzheimer's disease.

Mol Biol Rep

September 2025

Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.

Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.

View Article and Find Full Text PDF

Detection and pharmacokinetics of licochalcone A in brains of neuroinflammatory mouse model.

Naunyn Schmiedebergs Arch Pharmacol

September 2025

Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Gamal Abdel Nasser, 11835, New Cairo, Egypt.

Licochalcone A (LCA), a natural flavonoid with potent anti-inflammatory properties, has shown promise as a neuroprotective agent. However, its ability to cross the blood-brain barrier (BBB) and exert central effects remains underexplored. In this study, we demonstrate for the first time that LCA enhances cognitive function in a lipopolysaccharide (LPS)-induced neuroinflammatory mouse model and effectively penetrates the BBB.

View Article and Find Full Text PDF

More than a third of patients with glioblastoma experience tumor progression during adjuvant therapy. In this study, we performed a high-throughput drug repurposing screen of FDA-approved agents capable of crossing the blood-brain barrier in order to find agents to counteract acquired or inherent glioma cell resistance to temozolomide-associated cytotoxicity. We identified the cholesterol processing inhibitor, lomitapide, as a potential chemosensitizer in glioblastoma.

View Article and Find Full Text PDF

Introduction: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). CD4 CD25 Tregs, which normally suppress immune responses, exhibit impaired function in MS. Treg-derived extracellular vesicles (EVs) carry immunoregulatory proteins and miRNAs that modulate T-cell activity.

View Article and Find Full Text PDF