98%
921
2 minutes
20
Background: Sickle cell disease (SCD) and Diamond-Blackfan anemia syndrome (DBAS) are two hereditary blood diseases that present significant challenges to patients, their caregivers, and the healthcare system. Both conditions cause severe health complications and have limited treatment options, leaving many individuals without access to curative therapies like hematopoietic stem cell transplantation. Recent advancements in gene and cell therapies offer the potential for a new curative option, marking a pivotal shift in the management of these debilitating diseases. However, the implementation of these therapies necessitates a nuanced understanding of the ethical and social implications.
Methods: In this mixed methods systematic review, we explore the responsible development and implementation of gene and cell therapies for SCD and DBAS and aim to sketch a path toward ethically and socially sound implementation. Drawing upon principles of Responsible Research & Innovation and the 4A framework of availability, accessibility, acceptability, and affordability, we thematically analyze existing research to illuminate the ethical and social dimensions of these therapies. Following established PRISMA and JBI Manual guidelines, a search across multiple databases yielded 51 peer-reviewed studies with publication dates ranging from 1991 to 2023.
Results: Our thematic analysis shows that the theme of acceptability is heavily shaped by interactions between patients, caregivers, healthcare professionals and researchers, influencing treatment decisions and shaping the development of curative gene and cell therapies. Despite the generally positive perspective on these therapies, factors like the limited treatment options, financial constraints, healthcare professional attitudes, and (historical) mistrust can impede stakeholder decision-making. While acceptability focuses on individual decisions, the themes of availability, accessibility, and affordability are interconnected and primarily driven by healthcare systems, where high research and development costs, commercialization and a lack of transparency challenge equitable access to these therapies. This diminishes the acceptability for patients, revealing a complex interdependence of the themes.
Conclusions: The findings suggest the need for improved communication strategies in clinical practice to facilitate informed decision-making for patients and caregivers. Policy development should focus on addressing pricing disparities and promoting international collaboration to ensure equitable access to therapies. This review has been pre-registered in PROSPERO under registration number CRD42023474305.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907911 | PMC |
http://dx.doi.org/10.1186/s12910-025-01188-3 | DOI Listing |
Haematologica
September 2025
Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama.
Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder characterized by systemic inflammation and lymphadenopathy. Two major clinical subtypes, idiopathic plasmacytic lymphadenopathy (iMCD-IPL) and iMCD with thrombocytopenia, anasarca, fever, renal dysfunction/reticulin fibrosis, and organomegaly (iMCD-TAFRO), exhibit distinct pathophysiologic mechanisms. While interleukin-6 (IL-6) is known to be elevated in iMCD, the differences in IL-6 production sources between subtypes remain unclear.
View Article and Find Full Text PDFHaematologica
September 2025
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD,.
Immunotherapies, including cell therapies, are effective anti-cancer agents. However, cellular product persistence can be limiting with short functional duration of activity contributing to disease relapse. A variety of manufacturing protocols are used to generate therapeutic engineered T-cells; these differ in techniques used for T-cell isolation, activation, genetic modification, and other methodology.
View Article and Find Full Text PDFJ Cell Sci
September 2025
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
The microtubule motor dynein-2 is responsible for retrograde intraflagellar transport (IFT), a process critical for cilia assembly and cilium-dependent signaling. Mutations in genes encoding dynein-2 subunits interfere with ciliogenesis and are among the most frequent causes of skeletal ciliopathies. Despite its importance, little is known regarding dynein-2 assembly and regulation.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2025
Department of Medicine/Division of Cardiology, University of California Los Angeles. (S.S., C.R.S., L.F., M.P., C.P., Z.Z., J.J.M., R.C.D., D.S., A.J.L.).
Background: In genetic studies with the Hybrid Mouse Diversity Panel, we previously identified a chromosome 9 locus for atherosclerosis. We now identify NNMT (nicotinamide -methyltransferase), an enzyme that degrades nicotinamide, as the causal gene in the locus and show that the underlying mechanism involves salvage of nicotinamide to nicotinamide adenine dinucleotide (NAD).
Methods: Gain/loss of function studies in macrophages were performed to examine the role of NAD levels in macrophage proliferation and apoptosis in atherosclerosis.
Circ Genom Precis Med
September 2025
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China (J.Z., S.R., L.C., M.C., F.T., B.A., Y.Y., H.L.).
Background: Previous studies have suggested that the associations between ambient air pollution and atherosclerotic cardiovascular diseases (ASCVD) differ by genotype. A genome-wide approach provides a more comprehensive understanding of this relationship on a genomic scale.
Methods: Using data from ≈300 000 UK Biobank participants, we conducted a genome-wide interaction analysis on 10 745 802 variants.