Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Infections and chronic inflammation surrounding titanium implants frequently impair angiogenesis and osseointegration, substantially heightening the risk of implant failure. In this study, titanium dioxide nanotube arrays (TN) were fabricated on titanium metal substrates to serve as reservoirs for cinnamaldehyde (CA). Subsequently, MXene and ZIF-8 were deposited onto the TN surface to seal the nanotube pores. Finally, the gelatin methacrylate (GelMA) hydrogel system was utilized as a nanoparticle-controlled release platform to construct the Gel@MX-ZIF8/CA functional integrated coating. The results demonstrated that the Gel@MX-ZIF8/CA coating exhibited optimized roughness, improved hydrophilicity, and superior bioactivity. Furthermore, the Gel@MX-ZIF8/CA coating exhibited robust antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). At the cellular and molecular levels, Gel@MX-ZIF8/CA modulated mouse macrophage cells (RAW264.7) polarization toward the M2 phenotype, enhanced human umbilical vein endothelial cell (HUVEC) angiogenesis, and facilitated the osteogenic differentiation of mouse embryo osteoblast precursor cell (MC3T3-E1). In vivo studies using a rat bone defect model highlighted the coating's strong anti-inflammatory, antibacterial, angiogenic, and osteogenic capabilities of Gel@MX-ZIF8/CA. Additionally, Gel@MX-ZIF8/CA exhibited excellent blood compatibility and biosafety. In conclusion, the Gel@MX-ZIF8/CA coating integrated multiple advantages, offering significant potential in addressing orthopedic implant-associated infections and bone defects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2025.114615DOI Listing

Publication Analysis

Top Keywords

gel@mx-zif8/ca coating
12
coating exhibited
8
gel@mx-zif8/ca
7
controlled-release cinnamaldehyde
4
cinnamaldehyde mxene/zif8/gelatin
4
mxene/zif8/gelatin composite
4
composite coatings
4
coatings integrated
4
integrated strategy
4
strategy combat
4

Similar Publications

The transition from reconstructive to regenerative strategies in vascular surgery has intensified the need for grafts that are biocompatible, growth-capable, and resistant to thrombosis. Addressing this challenge, Park et al. introduce a groundbreaking method for engineering fully biological, endothelialized tissue-engineered vascular conduits (TEVCs) using decellularized human umbilical arteries (dHUAs) coated with human induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs).

View Article and Find Full Text PDF

The role of different imaging modalities-non-contrast CT (NCCT), CT perfusion (CTP), and diffusion-weighted imaging (DWI)-in selecting patients with large-core stroke for endovascular thrombectomy (EVT) is a subject of ongoing debate. This study aims to determine whether patients with large-core acute ischemic stroke (AIS) undergoing EVT triaged with CTP or DWI in addition to NCCT had different clinical outcomes compared to those only triaged with NCCT. We queried the Stroke Thrombectomy and Aneurysm Registry (STAR) for patients enrolled between 2014 and 2023 who presented with anterior-circulation AIS and large ischemic core (ASPECTS < 6) who underwent EVT in 41 stroke centers in the USA, Europe, Asia, and South America.

View Article and Find Full Text PDF

Background: The Japanese beetle Popillia japonica is an invasive pest that is creating a major concern due to its spread and damaging potential. Native to Japan, it was introduced in the U.S.

View Article and Find Full Text PDF

Multifunctional materials with potential antiviral applications in face masks, face shields, and hydrogels against mpox virus.

Sci Rep

September 2025

Biomaterials and Bioengineering Lab, Department of Biotechnology, Universidad Católica de Valencia San Vicente Mártir, Valencia, 46001, Spain.

The recent emergence and global spread of the mpox virus (MPXV), formerly known as the monkeypox virus, underscores the urgent need for effective antiviral materials to combat this emerging zoonotic pathogen. This study evaluates the antiviral activity of five functional material films against vaccinia virus, a representative model of MPXV, by the TCID50 assay. The tested materials include two electrospun polyester fabrics functionalised with benzalkonium chloride (BAK) or soap, specifically designed for antiviral face masks.

View Article and Find Full Text PDF

Co-Delivery of Ca-MOF and Mg-MOF Using Nanoengineered Hydrogels to Promote In Situ Mineralization and Bone Defect Repair: In Vitro and In Vivo Analysis.

Adv Healthc Mater

September 2025

Department of Chemical and Biochemical Engineering, School of Biomedical Engineering, Department of Chemistry, The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, ON, N6A 5B9, Canada.

Severe bone defects resulting from traumatic injuries or infections are severe skeletal deficiencies that are unable to regenerate on their own. Despite their effectiveness, current treatments including allografts and artificial bone substitutes, have several drawbacks. This includes poor osseointegration, low biocompatibility and biodegradability, limited cell infiltration, and adverse side effects arising from drug-loaded substitutes.

View Article and Find Full Text PDF