Combined transcriptomic and proteomic analyses reveal relevant myelin features in mice with ischemic stroke.

Funct Integr Genomics

Department of Rehabilitation Medicine, People's Hospital of Longhua, No 38 Jinglong Construction Road, Shenzhen, 518109, Longhua District, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ischemic stroke (IS), a leading cause of global disability and mortality, is characterized by white matter damage and demyelination. Despite advances, the molecular mechanisms driving post-IS myelin pathology remain poorly understood, limiting therapeutic development. This study investigates key myelin-related genes (MRGs) and their regulatory networks to identify novel therapeutic targets. A transient middle cerebral artery occlusion (MCAO) model was established in C57BL/6 mice, with brain tissues collected at four timepoints (Sham0D, MCAO0D, MCAO7D, MCAO14D). Transcriptomic and proteomic sequencing were performed, followed by soft clustering (Mfuzz), functional enrichment (GO/KEGG), and ROC analysis to identify key MRGs. Competing endogenous RNA (ceRNA) networks were constructed, and drug prediction was conducted using the Comparative Toxicogenomics Database (CTD) and molecular docking. Expression validation was performed via qRT-PCR and Western blot. Integrated multi-omics analysis identified Wasf3 and Slc25a5 as key MRGs, enriched in mitochondrial respiration, calcium metabolism, and cytoskeletal regulation. The AUC values of the one-to-one model scores were all greater than 0.7, suggesting that Wasf3 and Slc25a5 were able to effectively discriminate between samples from different time points. A ceRNA network revealed critical interactions, including the Wasf3-mmu-miR-423-5p-H19 axis, linking apoptosis and myelin dysfunction. Drug prediction highlighted valproic acid (VPA) as a high-affinity binder for both genes (binding energies: - 4.2 and - 4.7 kcal/mol), suggesting its potential as a therapeutic candidate for IS. Experimental validation confirmed significant downregulation of Wasf3 mRNA (p < 0.01) and protein (p = 0.069) post-IS, while Slc25a5 showed no significant changes, potentially due to sample size limitations. This study establishes Wasf3 and Slc25a5 as pivotal regulators of post-IS myelin pathology and proposes VPA as a promising therapeutic candidate to enhance remyelination. The findings underscore the utility of multi-omics approaches in bridging molecular mechanisms to clinical translation, offering new strategies for IS diagnosis and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909235PMC
http://dx.doi.org/10.1007/s10142-025-01573-6DOI Listing

Publication Analysis

Top Keywords

transcriptomic proteomic
8
ischemic stroke
8
key mrgs
8
drug prediction
8
combined transcriptomic
4
proteomic analyses
4
analyses reveal
4
reveal relevant
4
relevant myelin
4
myelin features
4

Similar Publications

Skeletal muscle atrophy and weakness are major contributors to morbidity, prolonged recovery, and long-term disability across a wide range of diseases. Atrophy is caused by breakdown of sarcomeric proteins resulting in loss of muscle mass and strength. Molecular mechanism underlying the onset of muscle atrophy and its progression have been analysed in patients, mice, and cell culture but the complementarity of these model systems remains to be explored.

View Article and Find Full Text PDF

The Atlas of the Shell Proteome in Oysters Reveals the Potential Roles of the Cytoskeleton and Extracellular Matrix in Biomineralization.

J Proteome Res

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Shell matrix proteins (SMPs) are fundamental biological macromolecules for mollusk shell formation, yet fewer than 400 SMPs in mollusks have been previously identified, hindering our understanding of how mollusks construct and maintain their shells. Here, we identified 1689 SMPs in the Pacific oyster using three different mass spectrometry techniques, representing a significant methodological advancement in shell proteomics, enabling a 6.52-fold increase in SMP identification compared to previous studies.

View Article and Find Full Text PDF

Background: Prostatic diseases, consisting of prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer (PCa), pose significant health challenges. While single-omics studies have provided valuable insights into the role of mitochondrial dysfunction in prostatic diseases, integrating multi-omics approaches is essential for uncovering disease mechanisms and identifying therapeutic targets.

Methods: A genome-wide meta-analysis was conducted for prostatic diseases using the genome-wide association studies (GWAS) data from FinnGen and UK Biobank.

View Article and Find Full Text PDF

Zika and dengue viruses differentially modulate host mRNA processing factors defining its virulence.

NAR Mol Med

April 2025

Tumor Vaccine and Biotechnology Branch, Division of Cellular Therapy 2, Office of Cellular Therapy and Human Tissue, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States.

Changes in global climate have contributed to increased tick and mosquito (vector) populations and subsequent vector-borne flavivirus infections in humans. This increase poses a threat to the safety of human-derived biologics such as cell and gene therapy. We conducted time-course transcriptomic and protein analyses to uncover host molecular factors driving the virulence of Zika virus (ZIKV) and Dengue virus (DENV) in relation to host defense mechanisms, as these viruses have caused recent flavivirus outbreaks.

View Article and Find Full Text PDF

and reciprocally promote their virulence factor secretion and pro-inflammatory effects.

Front Cell Infect Microbiol

September 2025

Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.

Background: Co-infections of and can significantly increase morbidity and mortality. However, the effect of co-existence on virulence factor secretion and pro-inflammatory effects remain elusive.

Methods: We systematically investigated the virulence factors released by and under different culturing conditions using proteomics.

View Article and Find Full Text PDF