98%
921
2 minutes
20
Ischemic stroke (IS), a leading cause of global disability and mortality, is characterized by white matter damage and demyelination. Despite advances, the molecular mechanisms driving post-IS myelin pathology remain poorly understood, limiting therapeutic development. This study investigates key myelin-related genes (MRGs) and their regulatory networks to identify novel therapeutic targets. A transient middle cerebral artery occlusion (MCAO) model was established in C57BL/6 mice, with brain tissues collected at four timepoints (Sham0D, MCAO0D, MCAO7D, MCAO14D). Transcriptomic and proteomic sequencing were performed, followed by soft clustering (Mfuzz), functional enrichment (GO/KEGG), and ROC analysis to identify key MRGs. Competing endogenous RNA (ceRNA) networks were constructed, and drug prediction was conducted using the Comparative Toxicogenomics Database (CTD) and molecular docking. Expression validation was performed via qRT-PCR and Western blot. Integrated multi-omics analysis identified Wasf3 and Slc25a5 as key MRGs, enriched in mitochondrial respiration, calcium metabolism, and cytoskeletal regulation. The AUC values of the one-to-one model scores were all greater than 0.7, suggesting that Wasf3 and Slc25a5 were able to effectively discriminate between samples from different time points. A ceRNA network revealed critical interactions, including the Wasf3-mmu-miR-423-5p-H19 axis, linking apoptosis and myelin dysfunction. Drug prediction highlighted valproic acid (VPA) as a high-affinity binder for both genes (binding energies: - 4.2 and - 4.7 kcal/mol), suggesting its potential as a therapeutic candidate for IS. Experimental validation confirmed significant downregulation of Wasf3 mRNA (p < 0.01) and protein (p = 0.069) post-IS, while Slc25a5 showed no significant changes, potentially due to sample size limitations. This study establishes Wasf3 and Slc25a5 as pivotal regulators of post-IS myelin pathology and proposes VPA as a promising therapeutic candidate to enhance remyelination. The findings underscore the utility of multi-omics approaches in bridging molecular mechanisms to clinical translation, offering new strategies for IS diagnosis and treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909235 | PMC |
http://dx.doi.org/10.1007/s10142-025-01573-6 | DOI Listing |
Am J Physiol Cell Physiol
September 2025
Humboldt-University zu Berlin, Berlin, Germany.
Skeletal muscle atrophy and weakness are major contributors to morbidity, prolonged recovery, and long-term disability across a wide range of diseases. Atrophy is caused by breakdown of sarcomeric proteins resulting in loss of muscle mass and strength. Molecular mechanism underlying the onset of muscle atrophy and its progression have been analysed in patients, mice, and cell culture but the complementarity of these model systems remains to be explored.
View Article and Find Full Text PDFJ Proteome Res
September 2025
State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
Shell matrix proteins (SMPs) are fundamental biological macromolecules for mollusk shell formation, yet fewer than 400 SMPs in mollusks have been previously identified, hindering our understanding of how mollusks construct and maintain their shells. Here, we identified 1689 SMPs in the Pacific oyster using three different mass spectrometry techniques, representing a significant methodological advancement in shell proteomics, enabling a 6.52-fold increase in SMP identification compared to previous studies.
View Article and Find Full Text PDFFront Genet
August 2025
Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Background: Prostatic diseases, consisting of prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer (PCa), pose significant health challenges. While single-omics studies have provided valuable insights into the role of mitochondrial dysfunction in prostatic diseases, integrating multi-omics approaches is essential for uncovering disease mechanisms and identifying therapeutic targets.
Methods: A genome-wide meta-analysis was conducted for prostatic diseases using the genome-wide association studies (GWAS) data from FinnGen and UK Biobank.
NAR Mol Med
April 2025
Tumor Vaccine and Biotechnology Branch, Division of Cellular Therapy 2, Office of Cellular Therapy and Human Tissue, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States.
Changes in global climate have contributed to increased tick and mosquito (vector) populations and subsequent vector-borne flavivirus infections in humans. This increase poses a threat to the safety of human-derived biologics such as cell and gene therapy. We conducted time-course transcriptomic and protein analyses to uncover host molecular factors driving the virulence of Zika virus (ZIKV) and Dengue virus (DENV) in relation to host defense mechanisms, as these viruses have caused recent flavivirus outbreaks.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.
Background: Co-infections of and can significantly increase morbidity and mortality. However, the effect of co-existence on virulence factor secretion and pro-inflammatory effects remain elusive.
Methods: We systematically investigated the virulence factors released by and under different culturing conditions using proteomics.