A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep Learning Radiopathomics Models Based on Contrast-enhanced MRI and Pathologic Imaging for Predicting Vessels Encapsulating Tumor Clusters and Prognosis in Hepatocellular Carcinoma. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose To develop deep learning (DL) radiopathomics models based on contrast-enhanced MRI and pathologic imaging to predict vessels encapsulating tumor clusters (VETC) and survival in hepatocellular carcinoma (HCC). Materials and Methods In this retrospective, multicenter study, 578 patients with HCC (mean age [±SD], 59 years ± 10; 442 male, 136 female) were divided into the training ( = 317), internal ( = 137), and external ( = 124) test sets. DL radiomics and pathomics models were developed to predict VETC using gadoxetic acid-enhanced MR and pathologic images. Deep radiomics score (DRS) and handcrafted and deep pathomics scores were compared between the group with VETC pattern in HCC (VETC+) and group without VETC pattern in HCC (VETC-). Multivariable Cox regression analyses were performed to identify independent prognostic factors, and the radiopathomics nomogram models were developed for early recurrence and progression-free survival (PFS). The prognostic power was evaluated using the concordance index (C index) and time-dependent receiver operating characteristic (ROC) curves. Results In the external test set, the Swin Transformer showed good performance for predicting VETC in both DL radiomics (area under the ROC curve [AUC], 0.77-0.79) and pathomics (AUC, 0.79) models. Patients with VETC+ HCC had significantly higher DRS and handcrafted and deep pathomics scores compared with patients with VETC- HCC in all datasets (all < .001). The radiopathomics nomogram model incorporating DRS in the arterial phase and the handcrafted and deep pathomics scores achieved C indexes of 0.69, 0.60, and 0.67 for early recurrence and time-dependent AUCs of 0.83 (95% CI: 0.76, 0.91), 0.81 (95% CI: 0.68, 0.94), and 0.78 (95% CI: 0.67, 0.88) for 3-year PFS in the training, internal, and external test sets, respectively. Early recurrence and PFS rates statistically significantly differed between the high- and low-risk patients stratified by the radiopathomics nomogram model (all < .05). Conclusion DL radiopathomics models effectively helped to predict VETC in HCC and assess the risk for early recurrence and PFS. Hepatocellular Carcinoma, Deep Learning, MRI, Radiopathomics, Survival © RSNA, 2025.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966553PMC
http://dx.doi.org/10.1148/rycan.240213DOI Listing

Publication Analysis

Top Keywords

early recurrence
16
deep learning
12
radiopathomics models
12
hepatocellular carcinoma
12
handcrafted deep
12
deep pathomics
12
pathomics scores
12
radiopathomics nomogram
12
learning radiopathomics
8
models based
8

Similar Publications