98%
921
2 minutes
20
Unlabelled: Pulmonary tuberculosis (PTB) and diabetes mellitus (DM) are prevalent chronic diseases with substantial implications for human health. DM patients are more susceptible to PTB, which exacerbates diabetes-related complications. However, the complex molecular mechanisms underlying the enhanced susceptibility of DM patients to PTB infection remain poorly understood. In this study, α- and β-diversity of gut microbiota was significantly reduced in PTB patients and PTB-DM patients. The abundances of families and in the the phylum were reduced in PTB patients and further diminished in PTB-DM patients. On the other hand, untargeted metabolomics in frozen serum and stool samples indicated that phenylalanine, tyrosine, and tryptophan biosynthesis, metabolites of arginine, proline, tryptophan, and histidine were consistently altered in PTB patients and PTB-DM patients, with significant upregulation of most metabolites. Amino acids like serine, proline, and histidine were both remarkably elevated in PTB and PTB-DM patients. The correlation network analysis reveals the relationships between the shared microbial biomarkers and the shared metabolic pathways. This research contributes to the exploration of pivotal diagnostic biomarkers for both patients with PTB and PTB accompanied by diabetes. Specifically, shared reductions were identified in the genera , , , _, and _ in addition to notable regulation of amino acids, like glycine, serine, and histidine in patients with PTB and PTB-DM. Our study expands the comprehension of the intricate connections linking gut microbiota, fecal metabolites, and serum metabolites in PTB and PTB-DM patients.
Importance: This study expands the understanding of the complex links between gut microbiota, fecal metabolites, and serum metabolites in patients with PTB and PTB-DM through multi-omics techniques. It is helpful for us to understand the complex molecular mechanism of increased susceptibility to PTB infection in diabetic patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12323600 | PMC |
http://dx.doi.org/10.1128/spectrum.01772-24 | DOI Listing |
Arq Gastroenterol
September 2025
The Japanese Society of Internal Medicine, Editorial Department, Tokyo, Japan.
Background: This study aims to analyze research trends and emerging insights into gut microbiota studies from 2015 to 2024 through bibliometric analysis techniques. By examining bibliographic data from the Web of Science (WoS) Core Collection, it seeks to identify key research topics, evolving themes, and significant shifts in gut microbiota research. The study employs co-occurrence analysis, principal component analysis (PCA), and burst detection analysis to uncover latent patterns and the development trajectory of this rapidly expanding field.
View Article and Find Full Text PDFJ Crohns Colitis
September 2025
Department of Gastroenterology, University Hospital of Marseille Nord, Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France.
Background And Aims: While this strategy is frequently used for other biologics, real-world evidence on subcutaneous (SC) vedolizumab (VDZ) dose intensification in inflammatory bowel disease (IBD) is lacking. This study aimed to assess the effectiveness and safety of SC VDZ intensification.
Methods: We conducted a retrospective study in 25 centers including all patients with active ulcerative colitis (UC) or Crohn's disease (CD) (defined by PRO2), and incomplete or loss of response to SC VDZ 108mg EOW when the drug was intensified.
Anesthesiology
September 2025
Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida.
Background: The brain-gut-microbiome (BGM) axis is a communication network through which the brain and gastrointestinal microbiota interact via neural, hormonal, immune, and gene expression mechanisms. Gut microbiota dysbiosis is thought to contribute to neurocognitive disorders, including perioperative neurocognitive disorder (PND), and to various metabolic abnormalities. Recently, we reported that sevoflurane induces neurocognitive deficits in exposed rats as well as their future offspring, with male offspring being particularly affected (intergenerational PND).
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), Guangdong, China.
Curr Atheroscler Rep
September 2025
Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Health, Houston Methodist Hospital, Houston, TX, USA.
Purpose Of Review: This review aims to characterize the known cardiovascular (CV) manifestations associated with inflammatory bowel disease (IBD) and the underlying mechanisms driving these associations.
Recent Findings: Gut dysbiosis, a hallmark of patients with IBD, can result in both local and systemic inflammation, thereby potentially increasing the risk of cardiovascular disease (CVD) in the IBD population. Micronutrient deficiencies, anemia, and sarcopenia independently increase the risk of CVD and are frequent comorbidities of patients with IBD.