Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasms (IPMNs) are pancreatic ductal adenocarcinoma (PDAC) precursor lesions. Detecting these precursors and monitoring their progression are crucial for early PDAC diagnosis. Digital PCR (dPCR) is a highly sensitive nucleic acid quantification technique and offers a cost-effective option for patient follow-up. However, the clinical utility of conventional dPCR is restricted by multiplexing constraints, particularly due to the challenge of simultaneously quantifying multiple mutations and amplifications. In this study, we applied highly multiplexed dPCR and melting curve analysis to simultaneously measure single nucleotide mutations and amplifications of KRAS and GNAS. The developed 14-plex assay included both wild-type and mutant KRAS, a common driver gene in both PanIN and IPMN, and GNAS, which is specifically mutated in IPMN, along with RPP30, a reference gene for copy number alterations (CNAs). This multiplex dPCR method detected all target mutations with a limit of detection below 0.2% while quantifying CNAs. Additionally, the assay accurately quantified variant allele frequencies in liquid biopsy and tissue samples from both pancreatic neoplasm precursor and PDAC patients, indicating its potential for use in comprehensive patient follow-up.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1878-0261.70011DOI Listing

Publication Analysis

Top Keywords

highly multiplexed
8
digital pcr
8
variant allele
8
allele frequencies
8
copy number
8
number alterations
8
kras gnas
8
patient follow-up
8
mutations amplifications
8
multiplexed digital
4

Similar Publications

DNA Nanocage-Based Artificial Receptor Generator for Hydrophobic Interaction-Based Specific Membrane Anchoring.

Anal Chem

September 2025

Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.

Membrane receptor recognition is a specific biotargeting strategy for disease diagnosis and treatment, but it suffers from insufficient receptor expression levels. Hydrophobic interaction-based membrane anchoring strategy allows high anchoring density, but it lacks specificity. In this study, we present a DNA nanocage-based artificial receptor generator (DNARG) that combines the advantages of high specificity of receptor recognition and high density of hydrophobic membrane anchoring.

View Article and Find Full Text PDF

Background: Hospital surfaces are critical reservoirs of multidrug-resistant pathogens, including third-generation cephalosporin-resistant Gram-negative bacteria (3GC-R-GNB), significantly contributing to healthcare-associated infections (HCAIs). This challenge is pronounced in low- and middle-income countries, where resource constraints limit effective infection prevention and control (IPC) measures. This study screened hospital surfaces for 3GC-R-GNB in selected District Hospitals (DHs) in Mwanza, Tanzania.

View Article and Find Full Text PDF

Research advances in SERS-based sensing platforms for multiplex mycotoxin detection in feed.

Nanoscale Adv

September 2025

State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing 100193 China

Mycotoxins in feed can pose significant risks to the health of livestock and poultry, leading to reduced economic returns and impaired production efficiency, thereby impeding the sustainable development of the livestock industry. Consequently, the exploration of highly sensitive, simple and rapid detection methods for trace mycotoxins in feed is crucial for ensuring feed safety and promoting industrial sustainability. Surface-enhanced Raman spectroscopy (SERS), a rapid detection method characterized by high sensitivity, ease of operation, and resistance to water interference, has gained substantial traction in mycotoxin detection within feed matrices in recent years.

View Article and Find Full Text PDF

Shortwave infrared absorbing and fluorescent BODIPY J-aggregates for high-contrast imaging.

Chem Sci

August 2025

College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China

J-Aggregates hold significant promise for high-resolution shortwave infrared (SWIR) imaging, yet achieving robust SWIR absorption and emission simultaneously has been hindered by hypsochromic shifts in absorption and emission quenching caused by undesirable H- and random aggregation. To address this, we developed highly fluorescent BODIPY J-aggregates exhibiting absorption and emission spanning 1000-1600 nm. A key innovation was the implementation of a zig-zag molecular design, which effectively suppressed H-aggregation and minimized intermolecular interactions, thereby enabling anti-quenching SWIR emission.

View Article and Find Full Text PDF

Background: Tertiary lymphoid structures (TLSs) are linked to prognosis in esophageal squamous cell carcinoma (ESCC), but whether the distribution, abundance, and maturity of TLSs affect therapeutic efficacy and prognosis in ESCC treated with neoadjuvant chemoradiotherapy plus immunotherapy (NRCI) remains unclear. We explored TLS characteristics and correlated them with patient survival.

Methods: A total of 157 resectable ESCC patients treated with neoadjuvant therapy between September 2020 and May 2023 were divided into NRCI (n=49) and neoadjuvant chemoimmunotherapy (NCI, n=108) groups.

View Article and Find Full Text PDF