Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the improvement of integration levels to several nanometers or less, semiconductor leakage current has become an important issue, and oxide-based semiconductors, which have replaced Si-based channel layer semiconductors, have attracted attention. Herein, we fabricated capacitors with a metal-insulator-semiconductor-metal structure using HfO thin films deposited at 240 °C and TiO thin films deposited at 300 °C via remote plasma (RP) and direct plasma (DP) atomic layer deposition and analyzed the effects of the charge-trapping and semiconducting properties of these films. Charge-trapping memory (CTM) devices with HfO (charge-trapping layer) and TiO (semiconductor) films were fabricated and characterized in terms of their memory properties. AlO thin films were used as blocking and tunneling layers to prevent the leakage of charges stored in the charge-trapping layer. For the TiO layer, the heat-treatment temperature was optimized to obtain an anatase phase with optimal semiconductor properties. The memory characteristics of the RP HfO-TiO CTM devices were superior to those of the DP HfO-TiO CTM devices. This result was ascribed to the decrease in the extent of damage and contamination observed when the plasma was spaced apart from the deposited HfO and TiO layers (i.e., in the case of RP deposition) and the reduction in the concentration of oxygen vacancies at the interface and in the films.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901223PMC
http://dx.doi.org/10.3390/ma18050948DOI Listing

Publication Analysis

Top Keywords

thin films
12
ctm devices
12
devices hfo
8
hfo charge-trapping
8
direct plasma
8
plasma atomic
8
atomic layer
8
layer deposition
8
films deposited
8
charge-trapping layer
8

Similar Publications

The Electronic Structure of Palladium on Magnetoelectric CrO(0001).

J Phys Condens Matter

September 2025

Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska-Lincoln, Jorgensen Hall, 855 North 16th Str., NE 68588-0299, Lincoln, Nebraska, 68588-0007, UNITED STATES.

The band structure of ultrathin Pd(111) thin films grown on the CrO(0001) surface was studied by angular-resolved photoemission spectroscopy (ARPES) combined with first-principles calculations. The CrO(0001) interface and the expanded Pd lattice constant appears to significantly affect the occupied band structure of an ultrathin palladium film. A characteristic band splitting is seen in the experimental occupied electronic structure, forming a hexagonal pattern approximately half-way from the Γ" point to the surface Brillouin zone boundary.

View Article and Find Full Text PDF

Prolonging All-Optical Molecular Electron Spin Coherence in the Tissue Transparency Window.

J Am Chem Soc

September 2025

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].

View Article and Find Full Text PDF

Recently, metal-organic frameworks (MOFs) have shown high potential in the field of sensing. However, fluorescent-based detection with MOFs in solution needs complex pre-treatments and has stability issues, complicating measurements and handling for sensing applications. Here, an easy-to-handle and low-cost strategy is introduced to convert MOF-based sensing from solution to surface using scanning probe lithography.

View Article and Find Full Text PDF

Bandgap-Tailored (BiSb)Se Thin Films Enabling Fast Broadband Near-Infrared Photodetection and Imaging.

Small

September 2025

Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physic

Antimony selenide (SbSe), a narrow-bandgap semiconductor with strong light absorption, exhibits photoresponse up to ≈1050 nm due to its intrinsic 1.15 eV bandgap. To extend detection into the near-infrared (NIR, 700-1350 nm), Bi-alloyed (BiSb)Se is developed via vacuum sputtering and postselenization.

View Article and Find Full Text PDF

Wafer-scale integration of monolayer MoS residue-free support layer etching and angular strain suppression.

Nanoscale

September 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.

View Article and Find Full Text PDF