Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The inhibitory performance of three distinct protic ionic liquids (PILs), namely, 2-hydroxyethyl ammonium formate (PIL 01), 2-hydroxyethyl ammonium propionate (PIL 02), and 2-hydroxyethyl ammonium pentanoate (PIL 03), was evaluated to determine their suitability as eco-friendly corrosion inhibitors for carbon steel (ASTM A36) in a 3.5 wt. % NaCl aerated neutral electrolyte solution. Standard corrosion inhibitor assessment methods, including electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), weight loss measurements, and microscopic techniques (SEM and optical microscopy), were employed to examine the steel surface and corrosion rate. There is a general agreement that the inhibition efficacy is directly associated with the adsorption capacity of substances on the surface of an investigated material, normally stainless or carbon steel. The standard free energies of adsorption were approximately -22 kJ mol, indicating a physical adsorption type of interaction between ionic liquids and the electrode surface. The adsorption behavior of protic ionic liquids on an A36 steel surface conforms to a Langmuir-type isotherm. In conclusion, PIL 01 demonstrated an inhibition efficiency exceeding 80%, while PILs 02 and 03 exhibited efficacies in the 50-60% range. The inhibition efficiency was observed to be proportional to the inhibitor's concentration. These results suggest that PIL 01, PIL 02, and PIL 03 exhibit significant corrosion inhibition properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901724PMC
http://dx.doi.org/10.3390/molecules30051033DOI Listing

Publication Analysis

Top Keywords

ionic liquids
16
protic ionic
12
carbon steel
12
2-hydroxyethyl ammonium
12
corrosion inhibitors
8
inhibitors carbon
8
pil 2-hydroxyethyl
8
steel surface
8
inhibition efficiency
8
pil pil
8

Similar Publications

Marine chitin valorization by ionic liquids and deep eutectic solvents: Dissolution, green extraction and conversion.

Bioresour Technol

September 2025

Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; Technology Innovation Center for High-Efficiency Utilization of Bamboo-Based Biomass in Guizhou Province, Guiyang 550025, China. Electronic address:

Worldwide, marine shell waste generated from the seafood industry has emerged as a significant environmental challenge. Indeed, this shell waste represents an abundant source of various valuable products, particularly chitin. However, the extraction and subsequent processing of chitin are hindered by the inherently resistant structure of these chitin-rich feedstocks, coupled with strong hydrogen bonding between chitin chains.

View Article and Find Full Text PDF

Ionic liquid-modified COF nanosphere for efficient extraction and sensitive detection of bisphenol pollutants.

Food Chem

September 2025

Henan International Joint Laboratory of Medicinal Plants Utilization, Colleage of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China. Electronic address:

The bisphenols (BPs) contaminants with distinctive endocrine-disrupting properties have garnered significant attention. A new analytical methodology was proposed for the sensitive detection of hazardous BPs in efficient and food safety monitoring. The approach utilizes an ionic liquid-modified covalent organic framework (SCOF-V/IL-5F) as a solid-phase extraction adsorbent to enrich harmful BPs.

View Article and Find Full Text PDF

Recyclable Cu-Catalyzed -Methylation and C5-Methylthiomethylation of Isatins with DMSO.

J Org Chem

September 2025

Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.

An unprecedented recyclable system of copper-catalyzed C-C/N coupling of isatins and DMSO without any oxidant and acidic/basic additive has been unlocked. The -isatins occur tandem -methylation and C5-methylthiomethylation in order, while -substituted isatins proceed C5-methylthiomethylation only. DMSO serves as Me and MeSCH sources as well as the solvent.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) imaging of ionic liquid (IL) distribution in electric double-layer (EDL) devices has been actively explored to understand the origin of their excellent performance. However, this has been impeded by insufficient resolution or a poor understanding of the mechanisms of 3D IL imaging. Here, we overcome these difficulties using 3D scanning force microscopy (3D-SFM) with variable tip/sample bias voltages for visualizing 3D ,-diethyl--methyl--(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (DEME-TFSI) distributions on a Au electrode in EDL capacitors.

View Article and Find Full Text PDF

Durable Near-Zero Wear Behavior Achieved by Polymer-Based Protic Ionic Liquids on Engineering Steel Surfaces.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

Near-zero wear on engineering steel surfaces is a promising solution to extend the service life of mechanical equipment. However, most existing strategies offer only limited low wear under particular conditions and friction pairs. To address this, we design a polymer-based proton ionic liquid (PPILs) lubricant, leveraging the proton exchange between polyethylenimine, which is rich in active nitrogen groups, and bis(2-ethylhexyl) phosphate.

View Article and Find Full Text PDF