Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Organic agriculture is expanding worldwide, driven by expectations of improving food quality and soil health. However, while organic certification by regulatory bodies such as the United States Department of Agriculture and the European Union confirms compliance with organic standards that prohibit synthetic chemical inputs, there is limited oversight to verify that organic practices, such as the use of authentic organic fertilizer sources, are consistently applied at the field level. This study investigated the elemental content of carbon (C) and nitrogen (N) and their stable isotopes (δ13C and δ15N) in seven different crops grown under organic or conventional practices to assess their applicability as a screening tool to verify the authenticity of organic labeled produce. Holm corrected Welch t-tests and a generalized linear mixed model (GLMM) were used to assess the potential of stable isotope or crop elemental content to differentiate organic vs. conventional production systems. Total C and N content or C/N ratio was not significantly different between production systems or among geographic origins for most crops. However, the average N stable isotope (δ15N) content differed, with conventional crops at 1.8 ±  2.2‰ and organic at 6.0 ±  3.4‰. A mixed model incorporating elemental contents and stable isotopes identified δ15N as the primary predictor in discriminating organic and conventional production systems. A δ15N threshold is suggested to differentiate conventional from organic grown raspberries (δ15N <  2.17‰) and strawberries (δ15N <  3.22‰), for an estimated false negative rate of 1%. Although further evaluation is needed, our extensive dataset (n = 791) captures key predictors of agricultural production systems and holds potential as a benchmark for future organic production verification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902282PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0318179PLOS

Publication Analysis

Top Keywords

organic conventional
16
stable isotopes
12
organic
12
production systems
12
elemental content
8
mixed model
8
stable isotope
8
conventional production
8
conventional
6
stable
5

Similar Publications

In recent years, the hydrazide skeleton, as a pivotal class of nitrogen-containing structures, has garnered considerable attention in medicinal chemistry and organic synthesis owing to its unique chemical versatility and broad-spectrum biological activities. In this study, a series of thiazole-containing benzoylhydrazine derivatives -, -, and - with structural divergence from conventional hydrazide-based molecular frameworks were designed, synthesized, and evaluated for their antifungal/antioomycete activities. The antifungal/antioomycete assay showed that some of the targeted compounds exhibited remarkable and broad-spectrum antifungal activities.

View Article and Find Full Text PDF

The construction of strong metal-support interactions (SMSI) is an effective strategy to enhance and control heterogeneous catalysts. However, conventional methods require pre-synthesized metal-loaded catalysts, followed by SMSI formation via high-temperature treatment under oxidative/reductive atmospheres, adsorbate-mediated treatment, and photo-treatment, adding complexity to catalyst synthesis and hindering continuous interfacial tuning. In this work, a "photobreeding" method is employed to treat ZnCdS, leveraging the UV-induced photochromic reaction of ZnS to generate metallic Zn at room temperature, while CdS remains inert.

View Article and Find Full Text PDF

Re-entrant phase behaviour of organic semiconductors.

Nat Mater

September 2025

Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, USA.

The number of polymeric and small-molecular acceptors for organic photovoltaics has exploded in the past decade. As a result, physical insights and efforts aiming at elucidating the coupling between composition and behaviour are required more than ever. Here we present an encompassing study into the phase behaviour of 55 polymer:small-molecular acceptor blends, pivotal in determining device performance and stability.

View Article and Find Full Text PDF

Microfluidic paper-based analytical devices for food spoilage detection: emerging trends and future directions.

Talanta

September 2025

Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam. Electronic address:

Food spoilage poses a global challenge with far-reaching consequences for public health, economic stability, and environmental sustainability. Conventional analytical methods for spoilage detection though accurate are often cost-prohibitive, labor-intensive, and unsuitable for real-time or field-based monitoring. Microfluidic paper-based analytical devices (μPADs) have emerged as a transformative technology offering rapid, portable, and cost-effective solutions for food quality assessment.

View Article and Find Full Text PDF

LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.

View Article and Find Full Text PDF