98%
921
2 minutes
20
Nanoparticles (NPs) have shown great potential in stabilizing foam for enhanced oil recovery (EOR). However, conventional NPs are difficult to recover and may contaminate produced oil, increasing operational costs. In contrast, superparamagnetic FeO NPs can be efficiently recovered using external magnetic fields, offering a sustainable solution for foam stabilization. In this study, FeO NPs were coated with SiO using tetraethyl orthosilicate (TEOS) and further modified with dodecyltrimethoxysilane to enhance their hydrophobicity. The modification effects were characterized, and the optimal foam-stabilizing FeO@SiO NPs were found to have a contact angle of 77.01°. The foam system formed with α-olefin sulfonate (0.2 wt%) as the foaming agent and the optimal modified NPs exhibited a drainage half-life of 452 s. After foam-stabilization experiments, the NPs were recovered and reused, with the results indicating that three recovery cycles were optimal. Finally, visual microscopic displacement experiments demonstrated that the foam stabilized by modified NPs effectively mobilized clustered, membranous, and dead-end residual oil, increasing the recovery rate by 17.01% compared with unmodified NPs. This study identifies key areas for future investigation into the application of magnetic nanoparticles for enhanced oil recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901647 | PMC |
http://dx.doi.org/10.3390/nano15050395 | DOI Listing |
Odontology
September 2025
Department of Biology, SR.C., Islamic Azad University, Tehran, Iran.
Streptococcus mutans, a key cause of dental caries, is not treated by conventional toothpaste, brushing, flossing, or antiseptic mouthwashes. This necessitates the development of enriched toothpaste. Cyanobacteria-derived phycoerythrin (PE) has antioxidant and antibacterial properties.
View Article and Find Full Text PDFVet Res Commun
September 2025
Department of Aquaculture, Faculty of Fisheries, Cukurova University, Adana, Turkey.
This study evaluated how dietary black seed oil (Nigella sativa L.) against the diazinon waterborne toxicity on Nile tilapia (Oreochromis niloticus), focusing on growth performance, hematological and biochemical parameters as well as oxidative stress markers and histological changes. A 40-day feeding trial was carried out using four experimental groups: Group 1 (control group), Group 2 (N.
View Article and Find Full Text PDFLangmuir
September 2025
CIPR, KFUPM, Dhahran 31261, Saudi Arabia.
Emulsion formation presents a significant operational challenge in oil production, necessitating the continuous development of novel and effective demulsification methods. However, the lack of a fundamental understanding of the mechanisms that regulate the formation of these emulsions significantly complicates this process. In this study, we systematically investigated the influence of Ca ions on crude oil emulsions.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry
CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.
View Article and Find Full Text PDFLangmuir
September 2025
Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China.
Surfactant-enhanced spontaneous imbibition is a proven method of enhancing oil recovery from shale reservoirs. However, a significant knowledge gap concerning the impact of clay minerals on surfactant-enhanced imbibition in shale reservoirs remains. Therefore, this study first analyzed the mineral composition and pore structure of the shale reservoirs.
View Article and Find Full Text PDF