Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Our study aim is to explore the mechanisms of short peptide passages on intestinal dysfunction in septic mice utilizing a metabolomics approach, which provides a new scientific basis for the clinical study of sepsis.

Methods: Mices were allocated at random into four groups: control (Con), cecal ligation and puncture followed by one, three or 7 day short-peptide-based enteral nutrition group (CLP + SPEN1), (CLP + SPEN3), and (CLP + SPEN7) groups. A liquid chromatography-mass spectrometry-based metabolomics method was used to analyze changes in serum metabolites in septic mice.

Results: Short peptides showed effectiveness in reducing symptoms, mucosal inflammation, and intestinal function damage scores in septic mice. The 16sRNA analysis showcased significant variances in the distribution of bacterial communities between the CLP + SPEN1, CLP + SPEN3, and CLP + SPEN7 groups. At the phylum level, statistically significant variances in the relative abundance of Proteobacteria, Firmicutes, and Bacteroidetes were recognized. The metabolomics analysis results showed significant separation of metabolites between the CLP + SPEN1 and CLP + SPEN3 groups, as well as significant differences in metabolite profiles between the CLP + SPEN3 and CLP + SPEN7 groups. Utilizing a differential Venn diagram, four metabolites were commonly different; 10-heptadecanoic and dodecanoic acids had statistical significance. The abundance of both dodecanoic and lactic acid bacteria was negatively associated at the genus level.

Conclusion: Short peptides were found to promote the growth of beneficial bacteria, Lactobacillus and uncultured_bacterium_f_Muribaculaceae, while reducing intestinal metabolites such as Dodecanoic acid and 10-Heptadecenoic acid. Moreover the Lactobacillus may play a significant therapeutic role in the treatment of sepsis. However, due to the limited number of experimental samples, the exact mechanism of action of short peptides awaits further confirmation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893400PMC
http://dx.doi.org/10.3389/fnut.2025.1522429DOI Listing

Publication Analysis

Top Keywords

septic mice
12
clp + spen1 clp + spen3
12
clp + spen3 clp + spen7
12
clp + spen7 groups
12
short peptides
12
short peptide
8
short
5
groups
5
impact 7-day
4
7-day short
4

Similar Publications

[Avitinib suppresses NLRP3 inflammasome activation and ameliorates septic shock in mice].

Nan Fang Yi Ke Da Xue Xue Bao

August 2025

Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu 233030, China.

Objectives: To investigate the effect of avitinib for suppressing NLRP3 inflammasome activation and alleviating septic shock and explore the underlying mechanism.

Methods: Mouse bone marrow-derived macrophages (BMDM), human monocytic leukemia cell line THP-1, and peripheral blood mononuclear cells (PBMC) isolated from healthy volunteers were pre-treated with avitinib, followed by activation of the canonical NLRP3 inflammasome using agonists including nigericin, monosodium urate (MSU) crystals, or adenosine triphosphate (ATP). Non-canonical NLRP3 inflammasome activation was induced intracellular transfection of lipopolysaccharide (LPS).

View Article and Find Full Text PDF

METTL1-mediated mG methylation of mRNA promotes macrophage inflammatory responses and multiple organ injury.

Sci Immunol

September 2025

Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.

RNA modifications regulate phenotype and function of macrophages by regulating RNA translation, splicing, and stability. However, the role of -methylguanosine (mG) modification in macrophages and inflammation remains unexplored. In this study, we observed elevated levels of the methyltransferase METTL1 and mG modifications in macrophages from mouse and human tissues during acute kidney injury (AKI).

View Article and Find Full Text PDF

Sepsis, a life-threatening systemic inflammatory condition, is a leading cause of mortality worldwide. Its pathophysiology involves the activation of nuclear factor kappa beta (NF-κB), which promotes the release of proinflammatory cytokines. Acetylsalicylic acid (ASA), a widely used nonsteroidal anti-inflammatory drug, inhibits NF-κB but poses risks of peptic ulcer disease and nephrotoxicity.

View Article and Find Full Text PDF

Background: The treatment of sepsis relies on antibiotics following infection; however, the emergence of resistant bacteria necessitates the development of new therapeutic agents. Irisin has been shown to alleviate symptoms in septic mice, although its mechanism of action remains unclear. Our aim was to determine the mechanism by which irisin alleviates sepsis.

View Article and Find Full Text PDF

The persistent challenge of sepsis-related mortality underscores the necessity for deeper insights, with our multi-center cross-age cohort study identifying insulin-like growth factor binding protein 6 (IGFBP6) as a critical regulator in sepsis diagnosis, prognosis, and mortality risk evaluation. Mechanistically, IGFBP6 engages in IGF-independent binding to prohibitin2 (PHB2) on epithelial cells, driving PHB2 tyrosine phosphorylation during sepsis. This process disrupts STAT1 phosphorylation, nuclear translocation, and its recruitment to the CCL2 promoter, ultimately impairing CCL2 transcription and macrophage chemotaxis.

View Article and Find Full Text PDF