98%
921
2 minutes
20
Phosphorylation of Smad3 is a critical mediator of TGF-β signaling, which plays an important role in regulating innate immune responses. However, whether Smad3 activation can be regulated in innate immune cells in TGF-β-independent contexts remains poorly understood. Here, we show that Smad3 is activated through the phosphorylation of its C-terminal residues (pSmad3C) in murine and human macrophages in response to bacterial and viral ligands, and this activation is mediated by activin A in a TGF-β-independent manner. Specifically, infectious ligands, such as LPS, induced secretion of activin A through the transcription factor STAT5 in macrophages, and activin A signaling in turn activated pSmad3C. This activin A/Smad3 axis controlled mitochondrial ATP production and ATP conversion into adenosine by CD73 in macrophages, enforcing an antiinflammatory mechanism. Consequently, mice with a deletion of activin A receptor 1b specifically in macrophages (Acvr1bfl/fl-Lyz2cre) succumbed more to sepsis as a result of uncontrolled inflammation and exhibited exacerbated skin disease in a mouse model of imiquimod-induced psoriasis. Thus, we have revealed a previously unrecognized natural brake to inflammation in macrophages that occurs through the activation of Smad3 in an activin A-dependent manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12043092 | PMC |
http://dx.doi.org/10.1172/JCI187063 | DOI Listing |
JTCVS Open
August 2025
Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif.
Objectives: Loeys-Dietz syndrome comprises genetically discrete subtypes of varying clinical severity. This study integrates longitudinal Loeys-Dietz syndrome clinical outcomes after aortic root replacement with transcriptomic analysis of aortic smooth muscle cell dysregulation to investigate mechanisms governing this subtype-specific aortic vulnerability.
Methods: Single institutional experience with aortic root replacement for nondissected aneurysm in patients with Loeys-Dietz syndrome was reviewed for midterm survival and distal aortic events (subsequent aortic intervention, aneurysm, or dissection).
In Vitro Cell Dev Biol Anim
September 2025
Department of Stomatology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing, 100142, PR China.
TP53TG1 is a long non-coding RNA related to the TP53 gene, which plays an important role in various biological processes such as tumorigenesis, cell cycle regulation, and DNA damage repair. In recent years, researchers have begun to explore the role of TP53TG1 in dental pulp biology, especially its potential impact on pulpitis and other pulp-related diseases. However, the role of TP53TG1 in human dental pulp stem cells (hDPSCs) remains unclear.
View Article and Find Full Text PDFIntroduction: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of fluid filled cysts, progressive fibrosis and chronic inflammation, often leading to kidney failure. Renal fibrosis in ADPKD is primarily driven by myofibroblast activation and excessive extracellular matrix (ECM) accumulation, which contribute to disease progression. Here we investigated the therapeutic potential of pirfenidone, an antifibrotic drug, on myofibroblast activity, ECM production, and ADPKD progression.
View Article and Find Full Text PDFFEBS Open Bio
September 2025
Unit of Biophysics and Bioengineering, Department of Biomedicine, University of Barcelona, Spain.
Non-small cell lung cancer (NSCLC) is the most common lung cancer type and one of the deadliest neoplasias worldwide. NSCLC is histologically classified into adenocarcinoma, squamous cell carcinoma, and other less frequent subtypes. Both subtypes and other solid tumors are increasingly regarded as abnormal organs, highlighting the critical role of the desmoplastic tumor stroma rich in cancer-associated fibroblasts (CAFs) in driving tumor progression and therapeutic resistance.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center fo
Persistent overactivation of the renal sympathetic nervous system drives kidney inflammation and fibrosis. Macrophages contribute to fibrogenesis by secreting various pro-fibrogenic mediators. However, whether the sympathetic nervous system regulates renal fibrosis by modulating macrophage-fibroblast interaction remains unclear.
View Article and Find Full Text PDF