98%
921
2 minutes
20
Maize is a globally important crop. Roots are the main part of maize and are mainly used for soil improvement and for maintaining crop growth as agricultural waste. Their application scope is relatively small. It is very important to analyze the components in maize roots in order to increase their resource utilization and reduce the burden of waste disposal. Metabolomics shows that maize roots contain various bioactive components, such as alkaloids, phenolic acids, flavonoids, etc. Therefore, this study explores the potential pharmacological effects of maize root metabolites under drought stress from the perspective of metabolomics combined with network pharmacology. The crude extraction of betaine, a metabolite in maize roots under drought stress, was conducted, and the anti-inflammatory and antioxidant effects of the crude extract were evaluated. The experimental results of DPPH, Fenton, etc. indicate that the crude extract of betaine from maize roots has certain anti-inflammatory and antioxidant effects, which provides a basis for its potential applications in the fields of medicine and food. The research on extracting medicinal active substances such as betaine from maize roots as agricultural waste not only has economic and environmental advantages but also has important significance in promoting technological progress and public health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c08012 | DOI Listing |
Pestic Biochem Physiol
November 2025
Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.
Maize (Zea mays L.) is one of the world's most widely cultivated and economically important cereal crop, serving as a staple food and feed source in over 170 countries. However, its global productivity is threatened by late wilt disease (LWD), a disease caused by Magnaporthiopsis maydis, that spreads through soil and seeds and can cause severe yield losses.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Center for Ecological Public Health Security of Ye
Nanoplastics (NPs) have raised increasing attention due to their potential environmental risks to terrestrial vegetation and food security. However, for the plants with various photosynthetic pathways, the differences in their photosynthetic response and related mechanisms upon NPs exposure are still unclear. Here, the photosynthetic responses of typical soybean and corn plants under polystyrene NPs (PSNPs) exposure were systematically compared for the first time.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:
Polycyclic aromatic hydrocarbons (PAHs) pose a significant threat to ecosystem security and human health. Laccase, a copper-containing oxidase, can oxidize aromatic compounds, potentially enhancing soil organic contaminants degradation and reducing secondary pollution risks in phytoremediation. However, the combined effects of laccase addition and soil temperature on phytoremediation efficiency remain underexplored.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
July 2025
School of Life and Environmental Sciences, University of Sydney, 380 Werombi Road, Brownlow Hill, Camden, NSW 2570 Australia.
Unlabelled: Sugars are essential for plant development, with nitrogen (N) availability playing a critical role in their distribution across plant organs, ultimately shaping growth patterns. However, the regulatory mechanisms modulating carbon (C) assimilate allocation and utilization under different N forms are not well understood. This study examined C fixation, utilization, and spatial re-distribution in the roots of hydroponically grown maize seedlings subjected to four N treatments: 1 mM NO (low N; LN), 2 mM NO (medium N; MN), 10 mM NO (high N; HN), and 1 mM NH (low ammonium; LA).
View Article and Find Full Text PDFPlanta
September 2025
School of Life and Environmental Sciences, University of Sydney, 380 Werombi Road, Brownlow Hill, Camden, NSW, 2570, Australia.
Nitrogen (N) deficiency in maize regulates carbon (C) metabolism by enhancing sugar and starch metabolism and related gene expression in both shoots and roots, while increasing root competition for assimilates causing carbohydrate accumulation in leaves and sheaths due reduced translocation to sink tissues. Soluble sugars are vital for plant development, with nitrogen (N) availability playing a key role in their distribution across plant organs, ultimately shaping growth patterns. However, the regulatory mechanisms governing carbon (C) assimilate allocation and utilization under different N forms remain unclear.
View Article and Find Full Text PDF