Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mechanical strain substantially influences tissue shape and function in various contexts from embryonic development to disease progression. Disruptions in these processes can result in congenital abnormalities and short-circuit mechanotransduction pathways. Manipulating strain in live tissues is crucial for understanding its impact on cellular and subcellular activities, unraveling the interplay between mechanics and cells. Existing tools, such as optogenetic modulation of strain, are limited to small strains over limited distances and durations. Here, a high-strain stretcher system, the TissueTractor, is introduced to enable simultaneous high-resolution spatiotemporal imaging of live cells and tissues under strain applications varying from 0% to over 100%. We use the system with organotypic explants from Xenopus laevis embryos, where applied tension reveals cellular strain heterogeneity and remodeling of intracellular keratin filaments. To highlight the device's adaptability, the TissueTractor is also used to study two other mechanically sensitive cell types with distinct physiological roles: human umbilical vein endothelial cells and mouse neonatal cardiomyocytes, revealing cell morphological changes under significant strain. The results underscore the potential of the TissueTractor for investigating mechanical cues that regulate tissue dynamics and morphogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12353401PMC
http://dx.doi.org/10.1002/smtd.202500136DOI Listing

Publication Analysis

Top Keywords

simultaneous high-resolution
8
strain
6
tissuetractor
4
tissuetractor device
4
device applying
4
applying large
4
large strains
4
strains tissues
4
cells
4
tissues cells
4

Similar Publications

Shortwave infrared absorbing and fluorescent BODIPY J-aggregates for high-contrast imaging.

Chem Sci

August 2025

College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China

J-Aggregates hold significant promise for high-resolution shortwave infrared (SWIR) imaging, yet achieving robust SWIR absorption and emission simultaneously has been hindered by hypsochromic shifts in absorption and emission quenching caused by undesirable H- and random aggregation. To address this, we developed highly fluorescent BODIPY J-aggregates exhibiting absorption and emission spanning 1000-1600 nm. A key innovation was the implementation of a zig-zag molecular design, which effectively suppressed H-aggregation and minimized intermolecular interactions, thereby enabling anti-quenching SWIR emission.

View Article and Find Full Text PDF

Sichuan Basin (SCB) is a critical region in China facing the dual pressures of air pollution and population aging. This study constructed high resolution (1 km) PM datasets for SCB using advanced machine learning approaches - Super Resolution Generative Adversarial Networks (SRGAN) and Convolutional Neural Network - Long Short-Term Memory (CNN-LSTM). Evaluation results demonstrate good performance of the machine learning model (SRGAN: R = 0.

View Article and Find Full Text PDF

Resolving leukemic stem cell heterogeneity and plasticity with single-cell multiomics.

Semin Hematol

August 2025

Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM, gGmbH), Heidelberg, Germany.

Acute myeloid leukemia (AML) is an aggressive blood cancer in which disease initiation and relapse are driven by leukemic cells with stem-like properties, known as leukemic stem cells (LSCs). The LSC compartment is highly heterogenous and this contributes to differences in therapy response. This heterogeneity is determined by genetic and nongenetic factors including somatic mutations, the cell of origin, transcriptional and epigenetic states as well as phenotypic plasticity.

View Article and Find Full Text PDF

Traditional biophysical cytometry has been limited by its low-dimensional phenotyping characteristics, often relying on only one or a few cellular biophysical phenotypes as readouts. This has perpetuated the perception that biophysical cytometry lacks the power to determine cellular heterogeneity. Here, we introduce a multimodal biophysical cytometry platform, termed quantitative phase morpho-rheological (QP-MORE) cytometry, which simultaneously captures a collection of high-resolution biophysical and mechanical phenotypes of single cells at ultrahigh throughput (>10 000 cells per s).

View Article and Find Full Text PDF

Purpose: This study examined temporal relationships between hyoid burst and pharyngeal pressure events and evaluated how reference point, age, and sex influence pharyngeal swallowing coordination. We hypothesized that (a) latency between hyoid burst and pharyngeal pressure events increases with age, (b) males have longer event latency, and (c) pharyngeal pressure timing is less variable using a manometric reference point than hyoid burst.

Method: We analyzed ten 10-ml thin liquid swallows from 104 (42 males) healthy adults (aged 21-89 years) under simultaneous high-resolution pharyngeal manometry and videofluoroscopy.

View Article and Find Full Text PDF