98%
921
2 minutes
20
Porphyrins, known for their exceptional photoelectrochemical properties and high luminescence, are promising candidates for electrochemiluminescence (ECL) applications. However, their tendency to aggregate in aqueous solutions due to π-π stacking leads to luminescence quenching and reduced efficiency. To address this, we developed a "coordination disaggregation-induced enhancement" strategy, utilizing metal-organic frameworks (MOFs) as stable platforms for immobilizing porphyrin. These porphyrin-based MOFs not only increase the loading of luminescent groups and suppress the aggregation-caused quenching (ACQ) effect but also enhance electron transfer via uniform dispersion of pyrrole N in the porphyrin ligand, thereby improving ECL intensity. Additionally, they exhibit favorable biocompatibility and low toxicity, making them suitable for biomedical applications. By combining porphyrin-based MOFs as donors with PDA@MnO composites as quenchers, we constructed a quenching-type ECL immunosensor for detecting programmed death ligand 1 (PD-L1). This sensor achieves a detection range of 10 fg/mL to 100 ng/mL, with a limit of detection as low as 2.48 fg/mL, which demonstrates great potential for highly sensitive biomarker detection and promising applications in early cancer diagnosis and other medical diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c05144 | DOI Listing |
J Am Chem Soc
September 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
Metal-organic frameworks (MOFs) are distinguished by their structural diversity, tunable electronic properties, and exceptional performance in various applications. Notably, the electron-donating ability of ligands significantly enhances the ligand-to-metal charge transfer (LMCT) processes within these frameworks, thereby promoting efficient charge migration. Herein, we developed two electron-rich macrocyclic ligands derived from phenothiazine- and phenoxazine-functionalized calix[3]arenes, alongside their corresponding cobalt-coordinated MOFs.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Plastic Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.
Diabetic infected wounds represent a formidable clinical challenge characterized by persistent hyperglycemia-induced pathological cascades that disrupt normal healing processes through multiple mechanisms including chronic inflammation, oxidative stress, and microvascular dysfunction. As prototypical chronic wounds, they exhibit severely impaired tissue regeneration due to this multifaceted dysfunction in both skin architecture and biological function. Metal-organic frameworks (MOFs) have emerged as promising next-generation therapeutic platforms owing to their exceptional structural tunability, multifunctional properties, and precise spatiotemporal drug delivery capabilities.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
The application of nanoscale metal-organic frameworks (MOFs) in tissue engineering is receiving increased attention. As three-dimensional scaffolding materials that provide an appropriate extracellular microenvironment supporting the survival, proliferation, and organization of cells play a key role tissue engineering, hybridization of nanoscale MOFs with bulk hydrogels has led to the development of nanoscale MOF-combined hydrogels. However, development of nanoscale MOF-combined hydrogel scaffolds remains challenging.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, Rostock 18059, Germany.
Metal-organic frameworks (MOFs) are transformative platforms for heterogeneous catalysis, but distinguishing atomically dispersed metal sites from subnanometric clusters remains a major challenge. This often demands the integration of multiple characterization techniques, many of which either lack the resolving power to distinguish active sites from their surrounding environments (e.g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.
View Article and Find Full Text PDF