98%
921
2 minutes
20
Vancomycin is primarily used to treat severe infections caused by Gram-positive bacteria and is often considered as the last-resort therapy in the life-threatening situation. However, it is inherently ineffective against Gram-negative bacteria. Herein, we report the design, synthesis, and biological evaluation of novel vancomycin analogues incorporated with lipophilic cationic groups. Through structural optimization and structure-activity relationship (SAR) studies, we identified vancomycin analogue 18b, which exhibited remarkable antibacterial activity against A. baumannii ATCC 17978, with a MIC of 8 μg/mL. In contrast, vancomycin showed no activity against this strain, even at concentration as high as 128 μg/mL. Further investigations revealed that 18b possesses rapid bactericidal properties, low toxicity, and a reduced propensity to induce bacterial resistance. The exceptional antibacterial performance of 18b is partially attributed to the presence of membrane-targeting, lipophilic piperazine cationic groups. In a mouse model infected with A. baumannii ATCC 17978, 18b exhibited excellent efficacy at a dose of 20 mg/kg, while no toxicity was observed. These findings highlight 18b as a promising candidate for further development in the fight against Gram-negative bacterial infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2025.117483 | DOI Listing |
J Mol Neurosci
September 2025
Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey.
The ketogenic diet (KD), a high-fat, low-carbohydrate regimen, has been shown to exert neuroprotective effects in various neurological models. This study explored how KD-alone or combined with antibiotic-induced gut microbiota depletion-affects cognition and neuroinflammation in aging. Thirty-two male rats (22 months old) were assigned to four groups (n = 8): control diet (CD), ketogenic diet (KD), antibiotics with control diet (AB), and antibiotics with KD (KDAB).
View Article and Find Full Text PDFTurk J Pharm Sci
September 2025
İstanbul University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, İstanbul, Türkiye.
Objectives: This study focused on synthesizing and characterizing novel thiosemicarbazide derivatives containing a 1,2,4-triazole moiety and evaluating their antimicrobial activity against several bacterial strains. The research aimed to identify key structural features that enhance antimicrobial efficacy through structure-activity relationship analysis and identify the minimum inhibitory concentration (MIC) of the most potent compounds to assess their potential for further development as antimicrobial agents.
Materials And Methods: Nine novel thiosemicarbazide derivatives containing a 1,2,4-triazole moiety were synthesized by reacting 1,2,4-triazole derivatives with thiosemicarbazide precursors, and the products were characterized using infrared spectroscopy, proton nuclear magnetic resonance (H-NMR), carbon-13 nuclear magnetic resonance (C-NMR) spectroscopy, and elemental analysis.
Bioorg Med Chem
September 2025
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt. Electronic address:
With the continued upsurge of antibiotic resistance and reduced susceptibility to almost all frontline antibiotics, there is a pressing need for the development of new, effective, and safe alternatives. In this study, a scaffold-hopping strategy was utilized to develop a novel class of penicillin-binding protein 2a (PBP2a) inhibitors, centered around a 4H-chromen-4-one core structure. These newly designed compounds demonstrated strong antibacterial efficacy against methicillin-resistant Staphylococcus aureus (MRSA) and other drug-resistant gram-positive pathogens.
View Article and Find Full Text PDFEur J Med Chem
September 2025
Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province,
Methicillin-resistant Staphylococcus aureus (MRSA) is a major global health threat owing to its multi-drug resistance, creating an urgent need for novel antibiotics. This study focused on developing anti-MRSA agents by designing and synthesizing 30 xanthotoxin-pyridine quaternary ammonium derivatives, followed by evaluating their antibacterial activity and dissecting their mechanism of action against MRSA. Among all derivatives, III13 demonstrated as the most promising candidate: it exhibited potent anti-MRSA activity (MIC = 1 μg/mL), low cytotoxicity, minimal hemolysis, rapid bactericidal effects, and the ability to disrupt biofilms.
View Article and Find Full Text PDFTher Drug Monit
September 2025
Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
Background: Approximately 1-2% of patients undergoing hip or knee arthroplasty encounter a periprosthetic joint infection (PJI). Currently, the treatment involves revision surgeries and long-term antibiotic therapy. However, too low antibiotic concentrations can lead to treatment failure, whereas excessively high concentrations can lead to adverse events.
View Article and Find Full Text PDF