Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The successful integration of large language models (LLMs) into laboratory workflows has demonstrated robust capabilities in natural language processing, autonomous task execution, and collaborative problem-solving. This offers an exciting opportunity to realize the dream of autonomous chemical research on demand. Here, we report a robotic AI chemist powered by a hierarchical multiagent system, ChemAgents, based on an on-board Llama-3.1-70B LLM, capable of executing complex, multistep experiments with minimal human intervention. It operates through a Task Manager agent that interacts with human researchers and coordinates four role-specific agents─Literature Reader, Experiment Designer, Computation Performer, and Robot Operator─each leveraging one of four foundational resources: a comprehensive Literature Database, an extensive Protocol Library, a versatile Model Library, and a state-of-the-art Automated Lab. We demonstrate its versatility and efficacy through six experimental tasks of varying complexity, ranging from straightforward synthesis and characterization to more complex exploration and screening of experimental parameters, culminating in the discovery and optimization of functional materials. Additionally, we introduce a seventh task, where ChemAgents is deployed in a new robotic chemistry lab environment to autonomously perform photocatalytic organic reactions, highlighting ChemAgents's scalability and adaptability. Our multiagent-driven robotic AI chemist showcases the potential of on-demand autonomous chemical research to accelerate discovery and democratize access to advanced experimental capabilities across academic disciplines and industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c17738 | DOI Listing |