98%
921
2 minutes
20
Cilia are specialized structures found on a variety of mammalian cells, with variable roles in the transduction of mechanical and biological signals (by primary cilia, PC), as well as in the generation of fluid flow (by motile cilia). Their critical role in the establishment of a left-right axis in early development is well described, as well as in the defense immune function of multiciliated upper airway epithelium. By contrast, detailed analysis of the ciliary status of specific cell types during organogenesis and postnatal development has received less attention. In this study, we investigate the progression of ciliary status within the endothelium and mesenchyme of the lung. Remarkably, we find that pulmonary endothelial cells (ECs) lack PC at all stages of development, except in low numbers in the proximal portions of older pulmonary arteries. Mesenchymal cells, by contrast, widely exhibit PC in early development, and a large subset of PDGFRα+ fibroblasts maintain PC into adulthood. The dynamic and differential ciliation of multiple cellular populations in the developing lung both challenges prior assertions that PC are found on all cells and highlights a need to understand their spatiotemporal functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12353473 | PMC |
http://dx.doi.org/10.1002/dvdy.70008 | DOI Listing |
J Am Soc Nephrol
September 2025
Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
Background: Genetic modifiers are believed to play an important role in the onset and severity of polycystic kidney disease (PKD), but identifying these modifiers has been challenging due to the lack of effective methodologies.
Methods: We generated zebrafish mutants of IFT140, a skeletal ciliopathy gene and newly identified autosomal dominant PKD (ADPKD) gene, to examine skeletal development and kidney cyst formation in larval and juvenile mutants. Additionally, we utilized ift140 crispants, generated through efficient microhomology-mediated end joining (MMEJ)-based genome editing, to compare phenotypes with mutants and conduct a pilot genetic modifier screen.
JCI Insight
September 2025
Edinburgh Medical School: Biomedical Sciences & Euan MacDonald Centre for M, University of Edinburgh, Edinburgh, United Kingdom.
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein. Several therapeutic approaches boosting SMN are approved for human patients, delivering remarkable improvements in lifespan and symptoms. However, emerging phenotypes, including neurodevelopmental comorbidities, are being reported in some treated SMA patients, indicative of alterations in brain development.
View Article and Find Full Text PDFBrain
September 2025
IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, 40139, Italy.
An early diagnosis of Parkinson's disease (PD) represents a challenge and novel accurate biomarkers are therefore urgently needed. Detection of phosphorylated α-synuclein (p-α-syn) in skin nerve fibers has shown promise as such a marker. However, its accuracy for the identification of PD among patients with early signs of parkinsonism has not been thoroughly explored.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Rehabilitation Medicine, Second Xiangya Hospital, Central South University, Changsha 410011.
Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.
View Article and Find Full Text PDFJ Cell Sci
September 2025
Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA.
ARL13B is a regulatory GTPase enriched in cilia, making it a popular marker for this organelle. Arl13bhnn/hnn mice lack ARL13B expression, die during midgestation, and exhibit defects in ciliogenesis. The R26Arl13b-Fucci2aR biosensor mouse line directs the expression of fluorescently tagged full-length Arl13b cDNA upon Cre recombination.
View Article and Find Full Text PDF