98%
921
2 minutes
20
Herein, we investigated the effects of the spin state of a single Fe atom on the nitrogen reduction reaction (NRR) in BiOBr using density functional theory. Our simulations revealed that P doping can reduce the spin state of the single Fe atom. This leads to an overlap of orbitals between N and the Fe atom at the Fermi energy level, thereby promoting the activation of N. The investigation of NRR mechanisms revealed that the enzymatic mechanism is more favorable compared to the distal and alternating mechanisms. The formation of NNH with an energy barrier of 2.32 eV is identified as the rate-determining step for the NRR process in the Fe-doped BiOBr system. Furthermore, P doping dramatically reduces the energy barrier of the rate-determining step, which involves releasing the second NH molecule, by a factor of 2.37. This study elucidates the influence mechanism of the Fe spin state on the performance of the NRR, providing valuable theoretical guidance for designing highly efficient photocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cp04907a | DOI Listing |
J Phys Chem A
September 2025
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States.
Resonant three-photon ionization spectroscopy has been used to study the late 4d and 5d transition metal carbides RuC, RhC, OsC, IrC, and PtC. These species, like most diatomic transition metals with open nd subshells, exhibit an exceptionally high density of states near the ground separated atom limit. Spin-orbit and nonadiabatic interactions provide a means for the molecules to rapidly dissociate as soon as the bond dissociation energy (BDE) is exceeded.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States.
The iron(I) dinitrogen complex PhB(AdIm)FeN, which is supported by a very bulky 1-adamantyl-substituted tris(carbene)borate ligand, reacts with equimolar CO at low temperature to afford the high spin ( = 3/2) complex PhB(AdIm)Fe(CO). This monocarbonyl complex reacts with additional CO to afford the low spin ( = 1/2) dicarbonyl complex PhB(AdIm)Fe(CO). By contrast, the high spin iron(I) tris(pyrazolyl)borate complex TpFe(CO) does not react with additional CO.
View Article and Find Full Text PDFNano Lett
September 2025
Key Laboratory of Micro & Nano Photonic Structures, Department of Optical Science and Engineering, College of Future Information Technology, Fudan University, Shanghai 200433, China.
The separation and propagation of spin are vital to understanding spin-orbit coupling (SOC) in quantum systems. Exciton-polaritons, hybrid light-matter quasiparticles, offer a promising platform for investigating SOC in quantum fluids. By utilization of the optical anisotropy of materials, Rashba-Dresselhaus SOC (RDSOC) can be generated, enabling robust polariton spin transport.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
We present a self-consistent algorithm for optimal control simulations of many-body quantum systems. The algorithm features a two-step synergism that combines discrete real-time machine learning (DRTL) with Quantum Optimal Control Theory (QOCT) using the time-dependent Schrödinger equation. Specifically, in step (1), DRTL is employed to identify a compact working space (i.
View Article and Find Full Text PDFACS Omega
September 2025
Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 Ciudad de Mexico, Mexico.
In this study, we introduce a set of novel computational strategies based on second-order Mo̷ller-Plesset perturbation theory (MP2), enhanced through acceleration techniques, such as the resolution of the identity (RI). These approaches are further refined via spin-component scaling (SCS), following Grimme's methodology, and are specifically calibrated for the quantitatively accurate prediction of weak interaction energiesinteractions that play a critical role in biological systems. Among the developed methods, three variants exhibit outstanding performance, surpassing the accuracy of several state-of-the-art, nondynamical electronic structure techniques.
View Article and Find Full Text PDF