Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Butylated hydroxytoluene (BHT) is among the most widely used synthetic phenolic antioxidants. However, BHT and its metabolites have been detected in aquatic ecosystems, posing potential risks to aquatic organisms. The present study aimed to investigate the effects of BHT metabolites on embryonic development in zebrafish. To this end, embryos were exposed to BHT metabolites, including 3,5-di-tert-butyl-4 hydroxybenzaldehyde (BHT-CHO), 2,6-di-tert-butyl-4-(hydroxymethyl) phenol (BHT-OH), 3,5-di-tert-butyl-4 hydroxybenzoic acid (BHT-COOH), 2,6-di-tert-butyl-P-benzoquinone (BHT-Q), and 2,6-di-tert-butyl-4-hydroxy-4-methylcyclohexa-2,5-dien-1-one (BHT-quinol), from 1-120 h post-fertilization (hpf). BHT-CHO, -OH, -COOH, -Q, and -quinol were toxic to zebrafish larvae with 96 h LC values of > 0.10, 15.85, 4.51, > 1.30, and 3.46 mg/L, respectively. Moreover, the acute toxicity of BHT metabolites to zebrafish larvae was indicated by morphological abnormalities, changes in heart rate, and alterations in locomotory behavior. The results indicated that exposure to BHT-COOH and BHT-OH caused intestinal developmental abnormalities, blood coagulation, tail deformities, and pericardial edema. Exposure to BHT-Q and BHT-quinol resulted in abnormal swim bladder development. Moreover, alterations in heart rate and locomotory behavior were observed in zebrafish larvae exposed to BHT-COOH, BHT-OH, and BHT-quinol. These findings demonstrate that exposure to BHT metabolites significantly affects the early growth and developmental stages of zebrafish larvae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885457PMC
http://dx.doi.org/10.1038/s41598-025-91409-xDOI Listing

Publication Analysis

Top Keywords

zebrafish larvae
20
bht metabolites
20
butylated hydroxytoluene
8
metabolites zebrafish
8
heart rate
8
locomotory behavior
8
bht-cooh bht-oh
8
metabolites
6
zebrafish
6
bht
6

Similar Publications

In-silico modeling of SHLP6: A novel mitochondrial peptide controlling neurodegeneration and cellular aging.

Comput Biol Med

September 2025

Institute of Biotechnology, Department of Medical Biotechnology, SIMATS Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India. Electronic address:

Small humanin-like peptide-6 (SHLP6), is derived from the mitochondrial genome. The 3D structure of SHLP6 was evaluated using PEPstr, with homology modeling predicting a Cyt-C structure with a DOPE score of -645.717 and a GA341 score of 0.

View Article and Find Full Text PDF

Redundant and novel functions of scube genes during zebrafish development.

Dev Biol

September 2025

Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800, Australia. Electronic address:

The N-glycoprotein SCUBE family (Scube1, Scube2, and Scube3) plays diverse roles in vertebrate development and disease, yet many specific functions of the three family members remain unclear. These proteins exhibit broad tissue expression patterns, exist as soluble or membrane-tethered forms, and can form homo- or heteromeric complexes with each other, exerting both short- and long-range effects. Individual functional characterisation proves challenging because overlapping expression patterns and compensatory mechanisms likely obscure specific roles.

View Article and Find Full Text PDF

Alcoholic liver disorder (ALD) is one of the most prevalent hepatic ailments worldwide, with oxidative stress and inflammation playing a vital role in disease progression. The current study intended to assess the anti-inflammatory nature of Hamamelitannin (HAM), a gallotannin from Hamamelis virginiana barks, which was predicted to possess anti-inflammatory properties based on in-silico docking analysis. To further explore its effects, we examined the therapeutic effect of HAM against ethanol-mediated inflammation using an in-vivo zebrafish larvae model.

View Article and Find Full Text PDF

Bisphenol E Neurotoxicity in Zebrafish Larvae: Effects and Underlying Mechanisms.

Biology (Basel)

August 2025

Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China.

As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature.

View Article and Find Full Text PDF

Eyes Wide Open: Assessing Early Visual Behavior in Zebrafish Larvae.

Biology (Basel)

July 2025

Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy.

Early diagnosis is critical for the effective management of neurodegenerative disorders, and retinal alterations have emerged as promising early biomarkers due to the retina's close developmental and functional link to the brain. The zebrafish (Danio rerio), with its rapid development, transparent embryos, and evolutionarily conserved visual system, represents a powerful and versatile model for studying retinal degeneration. This review discusses a range of behavioral assays-including visual adaptation, motion detection, and color discrimination-that are employed to evaluate retinal function in zebrafish.

View Article and Find Full Text PDF