Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The use of AAV vectors for in vivo gene therapy has demonstrated the potential to permanently correct genetic diseases by delivering functional gene copies to the nuclei of affected tissues. AAV vectors, as tools for in vivo gene delivery, are particularly appealing and have shown safety and long-term efficacy in numerous organ-targeted experiments. Nevertheless, employing AAV vectors for gene therapy in the brain faces a notable hurdle in the shape of immune responses, chiefly instigated by the brain's resident immune cells, microglia. Additionally, lower levels of AAV vector-neutralizing antibodies have been detected in the cerebrospinal fluid compared to the circulatory system. This research, leveraging transcriptomic and single-cell RNA sequencing (scRNA-seq) data in conjunction with Mendelian randomization analysis, has identified the potential role of the XBP1 protein in mediating B-cell immunosuppression in the brain via the MDK-NCL ligand-receptor pair and associated genes. Furthermore, it paves the way for further investigation into the regulatory factors and pathways within the immune modulation network, as well as their prospective beneficial implications in immunotherapeutic treatments. By employing various innovative approaches, the study seeks to recreate the immune environment generated by AAV in the brain and preliminarily explore the immune suppression mechanisms induced by AAV vectors in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882665PMC
http://dx.doi.org/10.1007/s12026-025-09609-6DOI Listing

Publication Analysis

Top Keywords

aav vectors
16
immune suppression
8
vivo gene
8
gene therapy
8
immune
6
aav
6
brain
5
comprehensive analysis
4
analysis scrna-seq
4
scrna-seq rna-seq
4

Similar Publications

Adeno-associated virus (AAV) vectors are widely used in gene therapy, particularly for liver-targeted treatments. However, predicting human-specific outcomes, such as transduction efficiency and hepatotoxicity, remains challenging. Reliable models are urgently needed to bridge the gap between preclinical studies and clinical applications.

View Article and Find Full Text PDF

A myotropic AAV vector combined with skeletal muscle -regulatory elements improve glycogen clearance in mouse models of Pompe disease.

Mol Ther Methods Clin Dev

June 2025

Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.

Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.

View Article and Find Full Text PDF

Bietti crystalline dystrophy (BCD) is an autosomal recessive disorder caused by loss-of-function mutations in the gene, characterized by crystal-like lipid deposits in the retina, progressive photoreceptor loss, and retinal pigment epithelium (RPE) deterioration. Currently, there are no approved treatments for BCD. VGR-R01, an investigational gene therapy, uses subretinal administration of recombinant adeno-associated virus type 8 (AAV8) vector to deliver the human CYP4V2 gene.

View Article and Find Full Text PDF

genome editing with CRISPR-Cas9 systems is generating worldwide attention and enthusiasm for the possible treatment of genetic disorders. However, the consequences of potential immunogenicity of the bacterial Cas9 protein and the AAV capsid have been the subject of considerable debate. Here, we model the antigen presentation in cells after gene editing by transduction of a human cell line with an AAV2 vector that delivers the Cas9 transgene.

View Article and Find Full Text PDF

Many neurological and psychiatric diseases are characterized by pathological neuronal activity. Current treatments involve drugs, surgeries, and implantable devices to modulate or remove the affected region. However, none of these methods can be simultaneously nonsurgical and possess site- and cell type specificity.

View Article and Find Full Text PDF