Subendocardial quantification enhances coronary artery disease detection in F-flurpiridaz PET.

Eur J Nucl Med Mol Imaging

Departments of Medicine, (Division of Artificial Intelligence in Medicine), and Imaging, Cedars-Sinai Medical Center, 6500 Wilshire Boulevard, Los Angeles, CA, 90048, USA.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The new high resolution positron emission tomography (PET) myocardial perfusion imaging tracer, F-flurpiridaz, is set to enter clinical use soon following its recent regulatory approval. We developed an approach for evaluating subendocardial analysis for stress total perfusion deficit (TPD) and ischemic TPD, assessed its performance for detection of coronary artery disease (CAD) and compared these measures to transmural analysis and expert physician assessments.

Methods: Myocardial perfusion image data from the F-flurpiridaz phase III clinical trial (NCT01347710) were used. The subendocardial layer was automatically defined on the left ventricular contours and used for the derivation of polar maps. Areas under the receiver operating characteristic curve (AUC) for quantitative and visual measures were evaluated for detecting CAD, defined as ≥ 50% stenosis by invasive coronary angiography.

Results: In total, 753 cases were analyzed, with a median age of 63 (interquartile range 56,69) and 69% male. AUC for detecting ≥ 50% stenosis was higher for subendocardial than transmural analysis for stress (0.795 vs. 0.762, respectively; p = 0.013) and ischemic (0.795 vs. 0.767, respectively; p = 0.049) TPD. Subendocardial and transmural TPD achieved diagnostic performance greater than or comparable to that of the readers' assessments in the total population as well as across subgroups of interest.

Conclusion: Subendocardial analysis of ischemic perfusion improves the detection of CAD compared to transmural quantitative analysis or expert visual reading. These measures can be derived automatically with minimal user interaction. Integrating TPD quantitative measures could standardize the diagnostic approach for this novel tracer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12221820PMC
http://dx.doi.org/10.1007/s00259-025-07174-6DOI Listing

Publication Analysis

Top Keywords

coronary artery
8
artery disease
8
myocardial perfusion
8
subendocardial analysis
8
analysis stress
8
cad compared
8
transmural analysis
8
analysis expert
8
subendocardial transmural
8
subendocardial
6

Similar Publications

Leveraging GPT-4o for Automated Extraction and Categorization of CAD-RADS Features From Free-Text Coronary CT Angiography Reports: Diagnostic Study.

JMIR Med Inform

September 2025

Departments of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China, 86 18922109279, 86 20852523108.

Background: Despite the Coronary Artery Reporting and Data System (CAD-RADS) providing a standardized approach, radiologists continue to favor free-text reports. This preference creates significant challenges for data extraction and analysis in longitudinal studies, potentially limiting large-scale research and quality assessment initiatives.

Objective: To evaluate the ability of the generative pre-trained transformer (GPT)-4o model to convert real-world coronary computed tomography angiography (CCTA) free-text reports into structured data and automatically identify CAD-RADS categories and P categories.

View Article and Find Full Text PDF

Objectives: The no-touch (NT) technique for saphenous vein (SV) harvesting in coronary artery bypass surgery preserves perivascular tissue and has been proposed to improve vein graft patency compared to conventional (CON) harvesting. However, recent large randomized clinical trials (RCTs) have reported conflicting results. We performed a meta-analysis of all available RCTs comparing graft patency and clinical outcomes between NT-SV and CON-SV harvesting techniques.

View Article and Find Full Text PDF

Objectives: The management of patients with calcified de novo lesions remains a major clinical challenge even in the era of drug-eluting stents (DES). Drug-coated balloon (DCB) therapy has emerged as an alternative to DES to treat de novo lesions. Nevertheless, the management of calcified lesions using intravascular lithotripsy (IVL) combined with DCB to treat de novo lesions has not been investigated.

View Article and Find Full Text PDF

Objectives: The authors hypothesized that the origin of the right coronary artery (RCA) is a direct continuation of the major aortic arch branches (MAAB) takeoff plane, which may have implications for brachiocephalic interventions and next generation transcatheter aortic valve intervention (TAVI) embolic protection devices (EPDs).

Methods: In this single-center, retrospective, cross-sectional study, the authors analyzed computed tomographic angiography (CTA) images from 92 patients undergoing TAVI evaluation to determine the spatial relationship between the origin of the RCA and the MAAB takeoff plane. Patients with prior cardiothoracic or aortic interventions and those with anomalous RCA origin were excluded.

View Article and Find Full Text PDF

Predicting the future risk and outcomes of severe heart failure and coronary artery disease with machine learning in the UK Biobank Cohort.

PLoS One

September 2025

Department of Medicine, The Red Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada.

Background: In order to seriously impact the global burden of heart failure (HF) and coronary artery disease (CAD), identifying at-risk individuals as early as possible is vital. Risk calculator tools in wide clinical use today are informed by traditional statistical methods that have historically yielded only modest prediction accuracy.

Methods: This study uses machine learning algorithms to generate predictions models for the development and progression of severe HF and CAD.

View Article and Find Full Text PDF