Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Breast cancer metastasis to the brain, occurring in about 15-25% of cases, represents a major obstacle in the treatment of triple-negative breast cancer (TNBC). The molecular mechanisms driving this form of metastasis are still largely unknown. PD-L1, an immune checkpoint protein, is central to tumor immune evasion and has become a focus for immunotherapy development. While PD-L1 inhibitors have shown success in various cancer types, their effectiveness in TNBC brain metastases remains to be fully investigated. This highlights the urgent need to understand the complex interactions between metastatic brain tumors and the tumor microenvironment in TNBC patients. Gaining insights into these dynamics is crucial for developing new targeted therapies, including those that modulate the PD-L1 pathway, to better manage and treat TNBC brain metastases. We explore the impact of Capsanthin on the tumor microenvironment of brain metastases in triple-negative breast cancer (TNBC). Our results reveal that Capsanthin effectively inhibits the migration of brain metastasis TNBC cells. Furthermore, Capsanthin significantly reduces the expression of EZH2 and N-linked glycosylated PD-L1 proteins and mRNA in TNBC cells, encompassing both primary and metastatic sites, as well as in mesenchymal stem cells (3A6). Data from The Cancer Genome Atlas (TCGA) indicate that elevated expression levels of EZH2 correlate with poorer patient prognosis. Immunoprecipitation assays demonstrate a direct interaction between EZH2 and PD-L1 in brain metastases of TNBC, underscoring the pivotal role of the EZH2-PD-L1 axis. Additionally, Capsanthin was found to suppress the expression of epithelial-mesenchymal transition (EMT) markers in metastatic brain TNBC cells and mesenchymal stem cells. Our results suggest that Capsanthin can modulate the tumor microenvironment and inhibit key pathways involved in cancer progression, offering potential therapeutic benefits for patients with TNBC brain metastases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880297PMC
http://dx.doi.org/10.1038/s41420-025-02368-1DOI Listing

Publication Analysis

Top Keywords

brain metastases
20
breast cancer
16
triple-negative breast
12
tnbc brain
12
tumor microenvironment
12
tnbc cells
12
brain
10
tnbc
10
inhibits migration
8
ezh2-pd-l1 axis
8

Similar Publications

Deep learning approaches have improved disease diagnosis efficiency. However, AI-based decision systems lack sufficient transparency and interpretability. This study aims to enhance the explainability and training performance of deep learning models using explainable artificial intelligence (XAI) techniques for brain tumor detection.

View Article and Find Full Text PDF

Two-Step Semi-Automated Classification of Choroidal Metastases on MRI: Orbit Localization via Bounding Boxes Followed by Binary Classification via Evolutionary Strategies.

AJNR Am J Neuroradiol

September 2025

From the Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America (J.S.S., B.M., S.H., A.H., J.S.), and Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (H.S.).

Background And Purpose: The choroid of the eye is a rare site for metastatic tumor spread, and as small lesions on the periphery of brain MRI studies, these choroidal metastases are often missed. To improve their detection, we aimed to use artificial intelligence to distinguish between brain MRI scans containing normal orbits and choroidal metastases.

Materials And Methods: We present a novel hierarchical deep learning framework for sequential cropping and classification on brain MRI images to detect choroidal metastases.

View Article and Find Full Text PDF

Background: Attention to existential needs has become part of daily treatment. Studies have described the concepts of existential experiences and existential interventions. However, a consensus or conceptual clarity regarding an existential approach in cancer patients is currently missing.

View Article and Find Full Text PDF

Purpose: Breast cancer (BC) is the most frequent cancer among women and the second leading cause of central nervous system (CNS) metastases. While the epidemiology of CNS metastases from BC has been well described, little is known about the treatment patterns and outcomes of young women < 40 years of age with BC that is metastatic to the CNS.

Methods: In this retrospective analysis, we identified patients with metastatic breast cancer (MBC) to the CNS who were treated at the Sunnybrook Odette Cancer Center, Toronto, Canada between 2008 and 2018.

View Article and Find Full Text PDF

Impact of weight classes on feasibility, safety, and efficacy of awake craniotomy for brain lesions within eloquent areas.

Neurosurg Rev

September 2025

Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, F-75014, France.

Awake craniotomy is the gold standard to achieve maximal safe resection of brain lesions located within eloquent areas. There are no established guidelines to assess patient's eligibility for awake craniotomy by weight class. This study assesses feasibility, safety, and efficacy of awake surgery by weight classes through an observational, retrospective, single-institution cohort analysis (2010-2024) of 526 awake craniotomies.

View Article and Find Full Text PDF