98%
921
2 minutes
20
Diffuse midline glioma (DMG) is a rare, aggressive, and fatal tumor that largely occurs in the pediatric population. To improve outcomes, it is important to characterize DMGs, which can be performed via magnetic resonance imaging (MRI) assessment. Recently, artificial intelligence (AI) and advanced imaging have demonstrated their potential to improve the evaluation of various brain tumors, gleaning more information from imaging data than is possible without these methods. This narrative review compiles the existing literature on the intersection of MRI-based AI use and DMG tumors. The applications of AI in DMG revolve around classification and diagnosis, segmentation, radiogenomics, and prognosis/survival prediction. Currently published articles have utilized a wide spectrum of AI algorithms, from traditional machine learning and radiomics to neural networks. Challenges include the lack of cohorts of DMG patients with publicly available, multi-institutional, multimodal imaging and genomics datasets as well as the overall rarity of the disease. As an adjunct to AI, advanced MRI techniques, including diffusion-weighted imaging, perfusion-weighted imaging, and Magnetic Resonance Spectroscopy (MRS), as well as positron emission tomography (PET), provide additional insights into DMGs. Establishing AI models in conjunction with advanced imaging modalities has the potential to push clinical practice toward precision medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309720 | PMC |
http://dx.doi.org/10.1093/neuonc/noaf058 | DOI Listing |
Brain Behav
September 2025
Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.
Purpose: Postoperative delirium (POD) remains poorly understood in terms of predictors and underlying mechanisms. This review summarized emerging evidence on the association between brain microstructural alterations and POD.
Method: This is a narrative review, describing the microstructural changes in aging brain, microstructural MRI findings, relationship among microstructural alterations, cognitive reserve and POD, and potential interventions targeting microstructure.
Adv Healthc Mater
September 2025
Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA.
Organ-on-chip (OOC) technologies, also called microphysiological systems (MPS), offer dynamic microenvironments that improve upon static culture systems, yet widespread adoption has been hindered by fabrication complexity, reliance on polydimethylsiloxane (PDMS), and limited modularity. Here, a modular MPS platform is presented, designed for ease of use, reproducibility, and broad applicability. The system comprises layered elastomeric inserts for dual monolayer cell culture, which is clamped within a reusable acrylic cassette for perfusion studies.
View Article and Find Full Text PDFBackground: In Vietnam, the incidence of transient ischemic attack (TIA) or ischemic stroke has increased in recent years due to lifestyle changes. Carotid stenosis is a common cause of TIA/ischemic stroke. This study aimed to determine the prevalence and identify risk factors for ipsilateral internal carotid artery (ICA) stenosis in patients with transient ischemic attack (TIA) or ischemic stroke.
View Article and Find Full Text PDFMagn Reson Med
September 2025
Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
Purpose: Tracer kinetic models are used in arterial spin labeling (ASL); however, deciding which model parameters to fix or fit is not always trivial. The identifiability of the resultant system of equations is useful to consider, since it will likely impact parameter uncertainty. Here, we analyze the identifiability of two-compartment models used in multi-echo (ME) blood-brain-barrier (BBB)-ASL and evaluate the reliability of the fitted water-transfer rate ).
View Article and Find Full Text PDFClin Transl Oncol
September 2025
Department of Radiation Oncology, Vithas La Milagrosa University Hospital, Madrid, 28010, Spain.
This narrative review analyzes current evidence comparing single-session and two-session approaches in Stereotactic Body Radiation Therapy (SBRT) and high-dose-rate (HDR) brachytherapy for localized prostate cancer. These ultra-hypofractionated strategies deliver high-precision ablative doses while minimizing exposure to normal tissues. SBRT regimens with fewer than five fractions show tumor control comparable to conventional treatments, offering reduced treatment burden and increased convenience.
View Article and Find Full Text PDF