98%
921
2 minutes
20
Motivation: Cryogenic electron microscopy (cryo-EM) is a core experimental technique used to determine the structure of macromolecules such as proteins. However, the effectiveness of cryo-EM is often hindered by the noise and missing density values in cryo-EM density maps caused by experimental conditions such as low contrast and conformational heterogeneity. Although various global and local map-sharpening techniques are widely employed to improve cryo-EM density maps, it is still challenging to efficiently improve their quality for building better protein structures from them.
Results: In this study, we introduce CryoTEN-a 3D UNETR++ style transformer to improve cryo-EM maps effectively. CryoTEN is trained using a diverse set of 1295 cryo-EM maps as inputs and their corresponding simulated maps generated from known protein structures as targets. An independent test set containing 150 maps is used to evaluate CryoTEN, and the results demonstrate that it can robustly enhance the quality of cryo-EM density maps. In addition, automatic de novo protein structure modeling shows that protein structures built from the density maps processed by CryoTEN have substantially better quality than those built from the original maps. Compared to the existing state-of-the-art deep learning methods for enhancing cryo-EM density maps, CryoTEN ranks second in improving the quality of density maps, while running >10 times faster and requiring much less GPU memory than them.
Availability And Implementation: The source code and data are freely available at https://github.com/jianlin-cheng/cryoten.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906401 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btaf092 | DOI Listing |
Unlabelled: Passive Acoustic Mapping (PAM) is rapidly emerging as a ubiquitous tool for real-time localization and monitoring of therapeutic ultrasound treatments involving cavitation in the context of safety or efficacy. The ability of PAM to spatially quantify and resolve cavitation activity offers a unique opportunity to correlate the energy of cavitation phenomena with locally observed bioeffects.
Objective: We aim to develop methods of measuring and reporting spatio-temporally varying cavitation energies that are energy-preserving, device-independent, and adequately normalized to the volume of tissue being affected by the reported cavitation activity.
Inorg Chem
September 2025
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
The super bulky sodium phosphanide, NaP(SiPr), was reacted with amidinatotetrylenes LECl (L = PhC(NBu), E = Si, Ge), resulting in the formation of phosphasilene LSi(SiPr) = PSiPr () and phosphanido germylene LGeP(SiPr) (), respectively. Investigation on the reactivity of and toward elemental sulfur was carried out, where a stepwise reaction yielding the silanethione LSi(=S)SiPr () and the silicon thioester analogue LSi(=S)SSiPr () was observed in the case of , while the treatment of with sulfur exclusively afforded the germanium thioester analogue. In addition, the reactions of with Fe(CO) and GeCl·1,4-dioxane led to the germylene-coordinated iron carbonyl and the asymmetric Ge-Ge-bonded complex, respectively, exhibiting the reactivity of the lone pair as well as a weak Ge-P bond.
View Article and Find Full Text PDFRep Pract Oncol Radiother
August 2025
Department of Oncology and Radiotherapy, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
Background: This study evaluates the quality of synthetic computed tomography (sCT) images for MR-only radiotherapy in prostate cancer using gamma analysis. A software tool, MRGamma, was developed to address challenges like the absence of electron density maps and registration uncertainties between magnetic resonance imaging (MRI) and planning CT (pCT).
Materials And Methods: Aplication developed in MATLAB assesses Hounsfield units (HU) discrepancies between CT and sCT images via 2D and 3D gamma analysis (GA).
Front Plant Sci
August 2025
Engineering Research Center of Edibleand Medicinal Fungi, Ministry of Education, Jilin Agricultural University Changchun, Changchun, China.
Traditional path planning algorithms often face problems such as local optimum traps and low monitoring efficiency in agricultural UAV operations, making it difficult to meet the operational requirements of complex environments in modern precision agriculture. Therefore, there is an urgent need to develop an intelligent path planning algorithm. To address this issue, this study proposes an improved Informed-RRT* path planning algorithm guided by domain-partitioned A* algorithm.
View Article and Find Full Text PDFActa Oncol
September 2025
Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.
Background And Purpose: Accurate stopping-power ratio (SPR) estimation is crucial for proton therapy planning. In brain cancer patients with metal clips, SPR accuracy may be affected by high-density materials and imaging artefacts. Dual-energy CT (DECT)-based methods have been shown to improve SPR accuracy.
View Article and Find Full Text PDF