A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Phage-host interaction in clinical isolates with functional and altered quorum sensing systems. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Quorum sensing (QS) plays a crucial role in regulating key traits, including the upregulation of phage receptors, which leads to heightened phage susceptibility in . As a result, higher cell densities typically increase the risk of phage invasions. This has led to speculation that bacteria may have evolved strategies to counterbalance this increased susceptibility. Additionally, non-synonymous mutations in LasR, the master regulator of QS, are common among cystic fibrosis patients, but the impact of these mutations on phage interactions remains poorly understood. Here, we systematically investigated the role of QS in shaping these interactions using bacterial strains with functional or altered QS systems. In the QS-functional strain ZS-PA-35, disruption of the Las system reduces cell susceptibility to the type IV pili-dependent phage phipa2, delaying bacterial lysis during the early logarithmic growth phase. At high cell densities, Las-induced dormancy further inhibits phage proliferation despite enhanced phage adsorption. Notably, nutrient supplementation fully restores phage proliferation in the strains with a functional Las system. In contrast, the QS-deficient strain ZS-PA-05, carrying a LasR mutation, fails to regulate phage-host interactions via QS. Moreover, our findings reveal that within mixed microbial populations, cells benefit from the presence of closely related kin, which collectively reduce prey density and limit phage-host interaction frequencies under nutrient-rich conditions. These results underscore the flexibility of QS-regulated defense strategies, highlighting their critical role in optimizing bacterial resilience against phage predation, particularly in heterogeneous communities most vulnerable to phages.IMPORTANCEBacteria have developed various strategies to combat phage infection, posing challenges to phage therapy. In this study, we demonstrate that strains with functional or altered quorum sensing (QS) systems may adapt different survival tactics for prolonged coexistence with phages, contingent upon bacterial population dynamics. The dynamics of phage infection highlight the influence of intrinsic heterogeneity mediated by QS, which leads to the emergence of different phage-host outcomes. These variants may arise as a result of coevolutionary processes or coexistence mechanisms of mutational and non-mutational defense strategies. These insights enhance our comprehension of how bacteria shield themselves against phage attacks and further underscore the complexity of such approaches for successful therapeutic interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12016573PMC
http://dx.doi.org/10.1128/aem.02402-24DOI Listing

Publication Analysis

Top Keywords

phage
13
functional altered
12
quorum sensing
12
strains functional
12
phage-host interaction
8
altered quorum
8
sensing systems
8
cell densities
8
las system
8
phage proliferation
8

Similar Publications